AN INVESTIGATION OF RADIANT HEAT TRANSFER IN CLUSTERS OF PARALLEL RODS

2019 ◽  
Author(s):  
S. A. Fisher ◽  
M. Cowin
1967 ◽  
Vol 89 (4) ◽  
pp. 300-308 ◽  
Author(s):  
R. H. Edwards ◽  
R. P. Bobco

Two approximate methods are presented for making radiant heat-transfer computations from gray, isothermal dispersions which absorb, emit, and scatter isotropically. The integrodifferential equation of radiant transfer is solved using moment techniques to obtain a first-order solution. A second-order solution is found by iteration. The approximate solutions are compared to exact solutions found in the literature of astrophysics for the case of a plane-parallel geometry. The exact and approximate solutions are both expressed in terms of directional and hemispherical emissivities at a boundary. The comparison for a slab, which is neither optically thin nor thick (τ = 1), indicates that the second-order solution is accurate to within 10 percent for both directional and hemispherical properties. These results suggest that relatively simple techniques may be used to make design computations for more complex geometries and boundary conditions.


Author(s):  
Dong Eun Lee ◽  
Jung Hyun Jang ◽  
Man Young Kim

In this work, the development of a mathematical heat transfer model for a walking-beam type reheating furnace is described and preliminary model predictions are presented. The model can predict the heat flux distribution within the furnace and the temperature distribution in the slab throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings, including the radiant heat transfer among the slabs, the skids, the hot combustion gases and the furnace wall as well as the gas convection heat transfer in the furnace. In addition, present model is designed to be able to predict the formation and growth of the scale layer on the slab in order to investigate its effect on the slab heating. A comparison is made between the predictions of the present model and the data from an in situ measurement in the furnace, and a reasonable agreement is found. The results of the present simulation show that the effect of the scale layer on the slab heating is considerable.


Sign in / Sign up

Export Citation Format

Share Document