ONE DIMENSIONAL VAPOR BUBBLE GROWTH MODEL FOR STEADY AND UNSTEADY PRESSURE FIELDS

Author(s):  
Ronnie Joseph ◽  
Kannan Iyer
2021 ◽  
Vol 2039 (1) ◽  
pp. 012035
Author(s):  
I V Vladyko ◽  
I P Malakhov ◽  
A S Surtaev ◽  
A A Pil’nik ◽  
A A Chernov

Abstract In this paper, the results of numerical calculations of a vapor bubble growth in superheated water at different pressures are presented. Modeling is based on a previously developed by the authors semi-analytical solution. The results are verified by experimental data obtained at atmospheric and subatmospheric pressures. The presented simulation results and experimental data are in good agreement. The advantage of the solution over the earlier ones (based on the thermal growth model) is shown.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


1995 ◽  
Vol 38 (5) ◽  
pp. 909-919 ◽  
Author(s):  
Renwei Mei ◽  
Wenchin Chen ◽  
James F. Klausner
Keyword(s):  

2018 ◽  
Vol 136 (12) ◽  
pp. 47210 ◽  
Author(s):  
Yun Zhang ◽  
Chunling Xin ◽  
Xiaohu Li ◽  
Mughal Waqas ◽  
Yadong He

2008 ◽  
Vol 17 (3) ◽  
pp. 227-234 ◽  
Author(s):  
S. P. Aktershev ◽  
V. V. Ovchinnikov
Keyword(s):  

2000 ◽  
Author(s):  
Hidemi Shirakawa ◽  
Yasuyuki Takata ◽  
Takehiro Ito ◽  
Shinobu Satonaka

Abstract Numerical method for thermal and fluid flow with free surface and phase change has been developed. The calculation result of one-dimensional solidification problem agrees with Neumann’s theoretical value. We applied it to a bubble growth in superheated liquid and obtained the result that a bubble grows with spherical shape. The present method can be applicable to various phase change problems.


Sign in / Sign up

Export Citation Format

Share Document