scholarly journals Difference in single leaf photosynthesis between old and new rice varieties II. A physiological basis for the difference in stomatal conductance between varieties.

1990 ◽  
Vol 59 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Eiki KURODA ◽  
Atsuhiko KUMURA
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
H. Arnold Bruns

Photosynthesis (CER (μmol CO2mleaf area-2 s−1)), stomatal conductance (gsw), and intercellular [CO2] (Ci) of soybean (Glycine maxL. Merr.) grown using the early soybean production system (ESPS) of the midsouth were determined. Three irrigated cultivars were grown using ESPS on Bosket (Mollic Hapludalfs) and Dundee (Typic Endoaqualf) soils in 2011 and 2012 at Stoneville, MS. Single leaf CER,gsw, andCiwere determined at growth stages R3, R4, and R5 using decreasing photosynthetic photon flux densities (PPFD,μmol m−2 s−1) beginning at 2000 PPFD and decreasing by 250 PPFD increments to 250 PPFD. Photosynthesis changes fit a quadratic polynomial for all fixed variables and range from ~6.0 and 9.0 CER at 250 PPFD and ~22.0 to 28.0 CER at 2000 PPFD. No cultivar differences in CER,gsw, orCiwere noted at any growth stage or site either year. In 2012, CER,gsw, andCiwere lower when measured at R5 than the two previous growth stages, which was not observed in 2011. The R5 sampling in 2012 had accumulated 39 to 70 more growing degree units at 10°C base temperature (GDU 10’s) than in 2011 and were likely more mature. Increased soybean yields from ESPS appear not to result from higher leaf CER.


2002 ◽  
Vol 53 (6) ◽  
pp. 643 ◽  
Author(s):  
M. J. Robertson ◽  
J. F. Holland ◽  
S. Cawley ◽  
T. D. Potter ◽  
W. Burton ◽  
...  

Canola tolerant to the triazine group of herbicides is grown widely in Australian broad-acre cropping systems. Triazine-tolerant (TT) cultivars are known to have a yield and oil content penalty compared with non-TT cultivars. This study was designed to elucidate the crop physiological basis for the yield differences between the two types. Two commercial cultivars, near-isogenic for the TT trait, were compared in a detailed growth analysis in the field, and 22 crops were compared for phenology and crop attributes at maturity. In the growth analysis study, the TT trait was found to lower radiation use efficiency, which carried through to less biomass at maturity. There were minimal effects on leaf area development and harvest index, and no effect on canopy radiation extinction. Across the 22 crops, where yield varied from 240 to 3400 kg/ha in the non-TT cultivar, yield was on average 26% less in the TT cultivar due to less biomass produced, as there was no significant effect on harvest index. The difference in oil content (2-5%) was greater in low oil content environments. Flowering was delayed by 2-10 days with a greater delay being in later flowering environments. Quantification of the physiological attributes of TT canola allows the assessment of the productivity of different cultivar types across environments.


1995 ◽  
Vol 22 (4) ◽  
pp. 603 ◽  
Author(s):  
PJ Sands

This paper presents a simple algorithm for calculating daily canopy photosynthesis given parameters of the single-leaf light response, the canopy extinction coefficient, canopy leaf area index, daylength, daily solar irradiance and daily maximum and minimum temperatures. Analytical expressions are derived for total daily production by a canopy of leaves whose light response is either a rectangular hyperbola or a Blackman response. An expression which gives an excellent approximation to canopy photosynthesis for an arbitrary hyperbolic light response is then derived. These expressions assume photosynthetically active radiation (PAR) within the canopy follows Beer's law, light-saturated photosynthetic rate at any point in the canopy is proportional to the ratio of local PAR to full-sun PAR, diurnal variation of PAR is sinusoidal, and parameters of the single-leaf photosynthetic light response do not vary diurnally. It is shown how these expressions can be used to accommodate diurnal temperature variation of photosynthesis in a simple manner. The accuracy of the approximation to the basic integral of leaf photosynthesis over the canopy and over time is illustrated by applying the algorithm to compute the seasonal variation of daily canopy photosynthesis and comparing these data with corresponding values obtained by numerical integration.


Sign in / Sign up

Export Citation Format

Share Document