Consensus-reaching methods for hesitant fuzzy multiple criteria group decision making with hesitant fuzzy decision making matrices

2017 ◽  
Vol 18 (11) ◽  
pp. 1679-1692 ◽  
Author(s):  
Jie Ding ◽  
Ze-shui Xu ◽  
Hu-chang Liao
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Liyuan Zhang ◽  
Xuanhua Xu ◽  
Li Tao

We propose some similarity measures between two triangular fuzzy numbers (TFNs) based on the vector similarity measures in vector space, which can be used to aggregate the decision information with TFNs. A methodology for multiple criteria group decision-making (MCGDM) problems with triangular fuzzy information is proposed; the criteria values take the form of linguistic values, which can be converts to TFNs. According to the weighted similarity measures between each alternative and ideal alternative, it is easy to rank alternatives and select the most desirable alternative. Finally, we apply the proposed methods to an illustrative example of MCGDM; the numerical results show that our method is effective and practical. For comparison, we also apply our similarity measures method to solve the fuzzy decision-making problem in Wei (2011); our method has simpler computation and gets the same results more rapidly than the FLOWHM method.


2019 ◽  
Vol 25 (5) ◽  
pp. 998-1015 ◽  
Author(s):  
Fanyong Meng ◽  
Jia Tang ◽  
Shaolin Zhang

Consistency analysis is a crucial topic for preference relations. This paper studies the consistency of interval linguistic fuzzy preference relations (ILFPRs) using the constrained interval linguistic arithmetic and introduces a new consistency definition. Then, several properties of this definition are researched. Meanwhile, the connection between this concept and a previous one is discussed. Following this concept, programming models for judging the consistency and for deriving consistent ILFPRs are constructed, respectively. Considering the case that incomplete ILFPRs may be obtained, a programming model for obtaining missing judgments following the consistency discussion is built. Afterwards, the consensus for group decision making (GDM) is studied and a model for adjusting individual ILFPRs to reach the consensus threshold is established. Consequently, an interactive procedure for GDM with ILFPRs is presented. A practical problem is provided to illustrate the utilization of the new algorithm and comparative discussion is offered.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1554
Author(s):  
Dragiša Stanujkić ◽  
Darjan Karabašević ◽  
Gabrijela Popović ◽  
Predrag S. Stanimirović ◽  
Muzafer Saračević ◽  
...  

The environment in which the decision-making process takes place is often characterized by uncertainty and vagueness and, because of that, sometimes it is very hard to express the criteria weights with crisp numbers. Therefore, the application of the Grey System Theory, i.e., grey numbers, in this case, is very convenient when it comes to determination of the criteria weights with partially known information. Besides, the criteria weights have a significant role in the multiple criteria decision-making process. Many ordinary multiple criteria decision-making methods are adapted for using grey numbers, and this is the case in this article as well. A new grey extension of the certain multiple criteria decision-making methods for the determination of the criteria weights is proposed. Therefore, the article aims to propose a new extension of the Step-wise Weight Assessment Ratio Analysis (SWARA) and PIvot Pairwise Relative Criteria Importance Assessment (PIPRECIA) methods adapted for group decision-making. In the proposed approach, attitudes of decision-makers are transformed into grey group attitudes, which allows taking advantage of the benefit that grey numbers provide over crisp numbers. The main advantage of the proposed approach in relation to the use of crisp numbers is the ability to conduct different analyses, i.e., considering different scenarios, such as pessimistic, optimistic, and so on. By varying the value of the whitening coefficient, different weights of the criteria can be obtained, and it should be emphasized that this approach gives the same weights as in the case of crisp numbers when the whitening coefficient has a value of 0.5. In addition, in this approach, the grey number was formed based on the median value of collected responses because it better maintains the deviation from the normal distribution of the collected responses. The application of the proposed approach was considered through two numerical illustrations, based on which appropriate conclusions were drawn.


Mathematics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 93
Author(s):  
Marcelo Loor ◽  
Ana Tapia-Rosero ◽  
Guy De Tré

A flexible attribute-set group decision-making (FAST-GDM) problem consists in finding the most suitable option(s) out of the options under consideration, with a general agreement among a heterogeneous group of experts who can focus on different attributes to evaluate those options. An open challenge in FAST-GDM problems is to design consensus reaching processes (CRPs) by which the participants can perform evaluations with a high level of consensus. To address this challenge, a novel algorithm for reaching consensus is proposed in this paper. By means of the algorithm, called FAST-CR-XMIS, a participant can reconsider his/her evaluations after studying the most influential samples that have been shared by others through contextualized evaluations. Since exchanging those samples may make participants’ understandings more like each other, an increase of the level of consensus is expected. A simulation of a CRP where contextualized evaluations of newswire stories are characterized as augmented intuitionistic fuzzy sets (AIFS) shows how FAST-CR-XMIS can increase the level of consensus among the participants during the CRP.


Sign in / Sign up

Export Citation Format

Share Document