Exceptional family of elements and the solvability of complementarity problems in uniformly smooth and uniformly convex Banach spaces

2005 ◽  
Vol 6A (4) ◽  
pp. 289-295 ◽  
Author(s):  
G. Isac ◽  
Jin-lu Li
1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Arian Bërdëllima ◽  
Gabriele Steidl

AbstractWe introduce the class of $$\alpha $$ α -firmly nonexpansive and quasi $$\alpha $$ α -firmly nonexpansive operators on r-uniformly convex Banach spaces. This extends the existing notion from Hilbert spaces, where $$\alpha $$ α -firmly nonexpansive operators coincide with so-called $$\alpha $$ α -averaged operators. For our more general setting, we show that $$\alpha $$ α -averaged operators form a subset of $$\alpha $$ α -firmly nonexpansive operators. We develop some basic calculus rules for (quasi) $$\alpha $$ α -firmly nonexpansive operators. In particular, we show that their compositions and convex combinations are again (quasi) $$\alpha $$ α -firmly nonexpansive. Moreover, we will see that quasi $$\alpha $$ α -firmly nonexpansive operators enjoy the asymptotic regularity property. Then, based on Browder’s demiclosedness principle, we prove for r-uniformly convex Banach spaces that the weak cluster points of the iterates $$x_{n+1}:=Tx_{n}$$ x n + 1 : = T x n belong to the fixed point set $${{\,\mathrm{Fix}\,}}T$$ Fix T whenever the operator T is nonexpansive and quasi $$\alpha $$ α -firmly. If additionally the space has a Fréchet differentiable norm or satisfies Opial’s property, then these iterates converge weakly to some element in $${{\,\mathrm{Fix}\,}}T$$ Fix T . Further, the projections $$P_{{{\,\mathrm{Fix}\,}}T}x_n$$ P Fix T x n converge strongly to this weak limit point. Finally, we give three illustrative examples, where our theory can be applied, namely from infinite dimensional neural networks, semigroup theory, and contractive projections in $$L_p$$ L p , $$p \in (1,\infty ) \backslash \{2\}$$ p ∈ ( 1 , ∞ ) \ { 2 } spaces on probability measure spaces.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Tawfeek ◽  
Nashat Faried ◽  
H. A. El-Sharkawy

AbstractLet E be a Banach space with dual space $E^{*}$ E ∗ , and let K be a nonempty, closed, and convex subset of E. We generalize the concept of generalized projection operator “$\Pi _{K}: E \rightarrow K$ Π K : E → K ” from uniformly convex uniformly smooth Banach spaces to uniformly convex uniformly smooth countably normed spaces and study its properties. We show the relation between J-orthogonality and generalized projection operator $\Pi _{K}$ Π K and give examples to clarify this relation. We introduce a comparison between the metric projection operator $P_{K}$ P K and the generalized projection operator $\Pi _{K}$ Π K in uniformly convex uniformly smooth complete countably normed spaces, and we give an example explaining how to evaluate the metric projection $P_{K}$ P K and the generalized projection $\Pi _{K}$ Π K in some cases of countably normed spaces, and this example illustrates that the generalized projection operator $\Pi _{K}$ Π K in general is a set-valued mapping. Also we generalize the generalized projection operator “$\pi _{K}: E^{*} \rightarrow K$ π K : E ∗ → K ” from reflexive Banach spaces to uniformly convex uniformly smooth countably normed spaces and study its properties in these spaces.


Sign in / Sign up

Export Citation Format

Share Document