scholarly journals In Vivo and In Vitro Tissue-Specific Expression of Green Fluorescent Protein Using the Cre-Lox System in Mouse Embryonic Stem Cells

Stem Cells ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Jan Schindehütte ◽  
Hidefumi Fukumitsu ◽  
Patrick Collombat ◽  
Gundula Griesel ◽  
Christopher Brink ◽  
...  
2006 ◽  
pp. 305-312
Author(s):  
Yutaka Suzuki ◽  
Tatsuyuki Takada ◽  
Nae Kadota ◽  
Yasushi Kondo ◽  
Ryuzo Torii

2016 ◽  
Vol 28 (11) ◽  
pp. 1741 ◽  
Author(s):  
Priscila Ramos-Ibeas ◽  
Eva Pericuesta ◽  
Raúl Fernández-González ◽  
Alfonso Gutiérrez-Adán ◽  
Miguel Ángel Ramírez

The deleted in azoospermia like (Dazl) gene is preferentially expressed in germ cells; however, recent studies indicate that it may have pluripotency-related functions. We generated Dazl–green fluorescent protein (GFP) transgenic mice and assayed the ability of Dazl-driven GFP to mark preimplantation embryo development, fetal, neonatal and adult tissues, and in vitro differentiation from embryonic stem cells (ESCs) to embryoid bodies (EBs) and to primordial germ cell (PGC)-like cells. The Dazl-GFP mice were generated by a two-step ESC-based strategy, which enabled primary and secondary screening of stably transfected clones before embryo injection. During preimplantation embryo stages, GFP was detected from the zygote to blastocyst stage. At Embryonic Day (E) 12.5, GFP was expressed in gonadal ridges and in neonatal gonads of both sexes. In adult mice, GFP expression was found during spermatogenesis from spermatogonia to elongating spermatids and in the cytoplasm of oocytes. However, GFP mRNA was also detected in other tissues harbouring multipotent cells, such as the intestine and bone marrow. Fluorescence was maintained along in vitro Dazl-GFP ESC differentiation to EBs, and in PGC-like cells. In addition to its largely known function in germ cell development, Dazl could have an additional role in pluripotency, supporting these transgenic mice as a valuable tool for the prospective identification of stem cells from several tissues.


2004 ◽  
Vol 13 (6) ◽  
pp. 636-645 ◽  
Author(s):  
Yi-Ping Liu ◽  
Oksana V. Dovzhenko ◽  
Mark A. Garthwaite ◽  
Svetlana V. Dambaeva ◽  
Maureen Durning ◽  
...  

2005 ◽  
Vol 14 (6) ◽  
pp. 339-351 ◽  
Author(s):  
R. Stewart ◽  
M. Lako ◽  
G. M. Horrocks ◽  
S. A. Przyborski

For many years, researchers have investigated the fate and potential of neuroectodermal cells during the development of the central nervous system. Although several key factors that regulate neural differentiation have been identified, much remains unknown about the molecular mechanisms that control the fate and specification of neural subtypes, especially in humans. Human embryonal carcinoma (EC) stem cells are valuable research tools for the study of neural development; however, existing in vitro experiments are limited to inducing the differentiation of EC cells into only a handful of cell types. In this study, we developed and characterized a novel EC cell line (termed TERA2.cl.SP12-GFP) that carries the reporter molecule, green fluorescent protein (GFP). We demonstrate that TERA2.cl.SP12-GFP stem cells and their differentiated neural derivatives constitutively express GFP in cells grown both in vitro and in vivo. Cellular differentiation does not appear to be affected by insertion of the transgene. We propose that TERA2.cl.SP12-GFP cells provide a valuable research tool to track the fate of cells subsequent to transplantation into alternative environments and that this approach may be particularly useful to investigate the differentiation of human neural tissues in response to local environmental signals.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Intekhab Islam ◽  
Gopu Sriram ◽  
Mingming Li ◽  
Yu Zou ◽  
Lulu Li ◽  
...  

Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs) are potentially an unlimited source of healthy and functional osteoprogenitors (OPs) that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs) expressing green fluorescent protein (GFP) and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.


2000 ◽  
Vol 228 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Thomas Pratt ◽  
Linda Sharp ◽  
Jenny Nichols ◽  
David J. Price ◽  
John O. Mason

Sign in / Sign up

Export Citation Format

Share Document