ENDOCRINE AND ENVIRONMENTAL INFLUENCES UPON PLASMA CORTISOL CONCENTRATIONS AND PLASMA RENIN ACTIVITY OF THE EEL, ANGUILLA ANGUILLA L.

1976 ◽  
Vol 70 (1) ◽  
pp. 81-95 ◽  
Author(s):  
I. W. HENDERSON ◽  
VARUNEE JOTISANKASA ◽  
W. MOSLEY ◽  
M. OGURI

SUMMARY The plasma concentrations of cortisol, sodium, potassium and calcium and plasma osmolarity were determined in freshwater silver eels, after intravascular injections of eel renin preparations, mammalian ACTH, mammalian angiotensin II and eel muscle extracts. Arterial blood specimens were taken before and after injection of test substances. Partially purified eel and rat renal renins gave prolonged pressor responses in intact and hypophysectomized eels and in the nephrectomized rat anaesthetized with sodium pentobarbitone. Angiotensin, but not ACTH, produced obvious pressor responses in intact and hypophysectomized eels and in eels without their corpuscles of Stannius. Hypophysectomized eels 4–8 days after operation had reduced plasma cortisol concentrations. No change in cortisol occurred in eels after removal of the corpuscles of Stannius. Eel renin preparations and ACTH gave increased concentrations of plasma cortisol 30 min after injection into hypophysectomized and intact eels. In general, the length of the renin-generated pressor response and the increased cortisol concentration were concomitant occurrences. Angiotensin injected into eels with corpuscles of Stannius removed and into hypophysectomized eels also increased cortisol levels. Control muscle extracts produced no significant changes. There were no acute changes in plasma electrolyte concentrations after the injections. Plasma renin activity measured indirectly by bioassay of angiotensin generated in vitro was more than twice as great in eels adapted to seawater than in eels in fresh water. Plasma renin activity gradually fell when eels were transferred from seawater to fresh water, and increased when the reverse transfer was carried out.

1975 ◽  
Vol 80 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Helmut Armbruster ◽  
Wilhelm Vetter ◽  
Rainer Beckerhoff ◽  
Jürg Nussberger ◽  
Hans Vetter ◽  
...  

ABSTRACT In order to investigate the role of renin secretion and of ACTH on the circadian rhythm of plasma aldosterone (PA), plasma renin activity (PRA), plasma cortisol (PC) and PA were determined at short-time intervals in 10 normal supine men. Six subjects were studied under a normal sodium intake and 4 under sodium restriction. In 4 subjects the secretion of ACTH was suppressed by dexamethasone. Under normal sodium intake changes in PA seemed to be more in parallel with changes in PC than by those in PRA as indicated by a higher significant correlation between PA and PC than between PA and PRA in 3 of the 4 subjects. In 1 subject no correlation was observed between PA and PC despite visual synchronism between the plasma concentrations of both hormones. Under dexamethasone medication fluctuations in PA were followed by those in PRA while PC was less than 2 μg/100 ml. In the sodium restricted state, changes in PA were closely paralleled and significantly correlated to PRA while no correlation was seen between PA and PC. Under dexamethasone medication the significant correlation between PA and PRA persisted. Our results indicate that in normal supine man the influence of ACTH and renin on PA may vary with different sodium intakes. Under normal sodium intake ACTH seems to be the dominant factor controlling PA, whereas under sodium restriction changes in PA are mediated through the renin angiotensin system. When the secretion of ACTH is suppressed by dexamethasone, renin controls PA both under normal and low sodium intake.


1981 ◽  
Vol 61 (s7) ◽  
pp. 307s-309s ◽  
Author(s):  
A. Morganti ◽  
Carla Sala ◽  
Anna Palermo ◽  
Lucia Turolo ◽  
A. Zanchetti

1. The possibility that the juxtaglomerular α1-adrenoceptors mediate an inhibitory action on renin release in man was examined in seven patients with essential hypertension, by measuring (i) the acute effects of prazosin (0.25 mg intravenously), a selective α1-adrenoceptor-blocking agent, on arterial pressure and plasma renin activity, the degree of α-blockade induced by the drug being assessed by comparing the pressor response with that to a test dose of phenylephrine before and after prazosin administration, and (ii) the increases in plasma renin activity in response to isoprenaline before and during the prazosin-induced α-blockade. 2. Twenty minutes after the infusion of prazosin, when the pressor response to phenylephrine was reduced by 80% with respect to control, (i) mean arterial pressure was practically unchanged, (ii) plasma renin activity was almost doubled and (iii) the increases in plasma renin activity in response to isoprenaline were significantly greater, both in absolute and percentage values, than those observed before prazosin. 3. The increments in baseline plasma renin activity induced by prazosin in the absence of decrease in arterial pressure and the enhancement in renin responsiveness to the β-adrenoceptor stimulus suggest that, in man, the juxtaglomerular α1-adrenoceptors exert a direct, suppressive action on renin release.


1975 ◽  
Vol 48 (2) ◽  
pp. 147-151
Author(s):  
C. S. Sweet ◽  
M. Mandradjieff

1. Renal hypertensive dogs were treated with hydrochlorothiazide (8−2 μmol/kg or 33 μmol/kg daily for 7 days), or timolol (4.6 μmol/kg daily for 4 days), a potent β-adrenergic blocking agent, or combinations of these drugs). Changes in mean arterial blood pressure and plasma renin activity were measured over the treatment period. 2. Neither drug significantly lowered arterial blood pressure when administered alone. Plasma renin activity, which did not change during treatment with timolol, was substantially elevated during treatment with hydrochlorothiazide. 3. When timolol was administered concomitantly with hydrochlorothiazide, plasma renin activity was suppressed and blood pressure was significantly lowered. 4. These observations suggest that compensatory activation of the renin-angiotensin system limits the antihypertensive activity of hydrochlorothiazide in renal hypertensive dogs and suppression of diuretic-induced renin release by timolol unmasks the antihypertensive effect of the diuretic.


1977 ◽  
Vol 43 (3) ◽  
pp. 421-424 ◽  
Author(s):  
J. R. Sutton ◽  
G. W. Viol ◽  
G. W. Gray ◽  
M. McFadden ◽  
P. M. Keane

Responses of plasma renin activity, plasma aldosterone, plasma cortisol, and plasma electrolyte concentration and urinary electrolyte and aldosterone excretion were studied in four men during hypoxic decompression to a stimulated altitude of 4,760 m in a pressure chamber. Three of the four subjects developed significant acute mountain sickness. Plasma sodium and potassium concentrations were unchanged. No significant change in plasma renin activity was observed, but values tended to fall. Plasma aldosterone concentration was depressed while plasma cortisol was elevated and diurnal variation lost. Urinary sodium excretion was unchanged, but urinary potassium and aldosterone excretion were decreased. The decrease in plasma and urinary aldosterone and urinary potassium in the absence of change in plasma renin activity or plasma potassium is of uncertain origin. It is unlikely to be due to a decrease in adrenocorticotropin secretion since plasma cortisol rose during the same time. None of the changes could be causally implicated in the development of acute mountain sickness although the increase in plasma cortisol was greatest in the most ill.


2010 ◽  
Vol 391 (12) ◽  
Author(s):  
M. David Percival ◽  
Sylvie Toulmond ◽  
Nathalie Coulombe ◽  
Wanda Cromlish ◽  
Sylvie Desmarais ◽  
...  

Abstract Renin is the first enzyme in the renin-angiotensin-aldosterone system which is the principal regulator of blood pressure and hydroelectrolyte balance. Previous studies suggest that cathepsin B is the activator of the prorenin zymogen. Here, we show no difference in plasma renin activity, or mean arterial blood pressure between wild-type and cathepsin B knockout mice. To account for potential gene compensation, a potent, selective, reversible cathepsin B inhibitor was developed to determine the role of cathepsin B on prorenin processing in rats. Pharmacological inhibition of cathepsin B in spontaneously hypertensive and double transgenic rats did not result in a reduction in renal mature renin protein levels or plasma renin activity. We conclude that cathepsin B does not play a significant role in this process in rodents.


1992 ◽  
Vol 262 (3) ◽  
pp. R524-R529 ◽  
Author(s):  
N. D. Binder ◽  
D. F. Anderson

We examined the relationship between acute reductions in renal perfusion pressure, as approximated by femoral arterial blood pressure, and plasma renin activity in the uninephrectomized fetal lamb. Renal perfusion pressure was reduced and maintained at a constant value by controlled partial occlusion of the aorta above the renal artery. After 15 min of reduced blood pressure, blood samples were taken for determination of plasma renin activity. This protocol was performed 22 times in 11 fetal lambs. Additionally, three of the fetuses were delivered by cesarean section and studied as newborns for the first week of life. In the fetus, there was a linear relationship between log plasma renin activity and femoral arterial blood pressure (P less than 0.01). After birth, the relationship still existed, although it was shifted to the right (P less than 0.0001). We conclude that there is a significant relationship between plasma renin activity and renal perfusion pressure in the fetal lamb, and as early as 1 day after birth, this relationship shifts to the right in the newborn lamb.


1986 ◽  
Vol 250 (4) ◽  
pp. R633-R637
Author(s):  
J. E. Szilagyi ◽  
J. Chelly ◽  
M. F. Doursout

The influence of blockade of endogenous opioids on the release of renin due to partial renal arterial constriction was determined acutely and chronically in unilaterally nephrectomized dogs. In acute preparations changes in plasma renin activity, arterial blood pressure, and heart rate were determined after 15 min of 60% renal arterial constriction before and after administration of either a saline vehicle, the opiate antagonist naloxone (0.05 mg/kg), or morphine (2 mg/kg). Acute antagonism of endogenous opiates abolished the increase in plasma renin activity and mean arterial pressure associated with renal arterial constriction. Repeated renal arterial constrictions in saline- or morphine-treated animals did not alter the humoral or hemodynamic responses. In chronic preparations long-term naloxone infusion attenuated the development of renovascular hypertension and diminished the increase in plasma renin activity. These data suggest that endogenous opioid peptides are modulators in the control of renin release and may be important participants in the pathogenesis of hypertension.


1986 ◽  
Vol 250 (1) ◽  
pp. F40-F46 ◽  
Author(s):  
S. Simchon ◽  
R. Y. Chen ◽  
R. D. Carlin ◽  
F. C. Fan ◽  
K. M. Jan ◽  
...  

The effects of alterations in apparent blood viscosity on renal hemodynamics and plasma renin activity (PRA) were studied in dogs anesthetized with sodium pentobarbital. Blood viscosity was altered isovolemically either by changes in hematocrit (Hct) or by an increase in plasma viscosity (dextran administration). Arterial blood pressure and renal blood flow (RBF) remained relatively constant when apparent blood viscosity was elevated by changes in Hct or plasma viscosity. Thus the hyperviscosity of blood was associated with a decrease of renal vascular hindrance, resulting in an essentially unchanged renal flow resistance. The decrease in renal vascular hindrance may result from renal vasodilation. In hyperviscosity induced with dextran, the increase in PRA correlates linearly with the decrease in renal vascular hindrance, with a coefficient of correlation of 0.968 (P less than 0.005). The increase in PRA that resulted when Hct was raised from 25 to 55% also can be correlated linearly with the decrease in renal vascular hindrance, with a coefficient of correlation of 0.953 (P less than 0.005). These results suggest that the decrease in renal vascular hindrance in response to a rise in apparent blood viscosity leads to an increase in PRA.


1988 ◽  
Vol 119 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Sadao Nakajima ◽  
Hiromichi Suzuki ◽  
Yo Kageyama ◽  
Takashi Takita ◽  
Takao Saruta

Abstract. The effects of atrial natriuretic peptide (ANP) on mean arterial blood pressure, heart rate, plasma renin activity, aldosterone, cortisol, norepinephrine, epinephrine and arginine vasopressin were studied in 6 anuric subjects receiving regular hemodialysis. An iv bolus injection of 8 nmol of ANP followed by infusion at 32 pmol·kg−1·min−1 for 1 h in the pre- and posthemodialysis period was performed. Basal plasma ANP was higher before than after hemodialysis. ANP administration produced a reduction in mean arterial blood pressure accompanied by an elevation of norepinephrine and of plasma renin activity (from 2.49 ± 0.52 to 3.39 ± 0.85 nmol·l−1·h−1 predialysis and from 2.78 ± 0.71 to 3.15 ± 0.86 nmol·l−1·h−1 postdialysis, respectively, mean ± sem; P < 0.05). Plasma aldosterone and cortisol were significantly decreased. Plasma epinephrine and AVP remained unchanged. These hemodynamic and hormonal changes were similar in the pre- and the postdialysis period. These results suggest that 1) ANP causes a fall in mean arterial blood pressure, which in turn induces reflex tachycardia and activation of the sympathetic nervous system without diuresis; 2) the activated sympathetic nervous system as reflected in elevation of plasma norepinephrine may increase plasma renin activity; 3) reduced plasma aldosterone is not influenced by enhancement of the reninangiotensin system; therefore, 4) reduction of plasma aldosterone as well as cortisol is probably due to direct action of ANP, and finally 5) AVP had no direct relation with ANP administration.


Sign in / Sign up

Export Citation Format

Share Document