IN-VITRO STUDIES OF NORMAL HUMAN THYROID CELLS: RESPONSES TO THYROTROPHIN AND DIBUTYRYL CYCLIC AMP

1977 ◽  
Vol 72 (1) ◽  
pp. 87-96 ◽  
Author(s):  
S. P. BIDEY ◽  
P. MARSDEN ◽  
J. ANDERSON ◽  
C. G. McKERRON ◽  
H. BERRY

SUMMARY Follicular cells isolated from normal human thyroid tissue have been cultured for up to 140 h with bovine thyrotrophin (TSH) or dibutyryl cyclic AMP (DBcAMP). Both compounds induced marked reorganization of the cells into three-dimensional follicular structures, whilst non-supplemented cells assumed a monolayer form. Cultures treated initially with TSH or DBcAMP showed a greater iodide uptake capacity, in comparison with unsupplemented cultures, in which iodide uptake was markedly diminished after 24 h. The release of tri-iodothyronine (T3) and thyroxine (T4) into the medium was determined by radioimmunoassay. Both TSH- and DBcAMP-treated cells showed a significant increase in iodothyronine output compared with unsupplemented control cells. In contrast to the 'classical' TSH-induced depression of the T4:T3 ratio in vivo, an increase in the ratio was observed for both TSH- and DBcAMP-supplemented cells in vitro. The ratio was also significantly greater after TSH than after DBcAMP, and possible implications of this finding are discussed.

1981 ◽  
Vol 98 (3) ◽  
pp. 370-376 ◽  
Author(s):  
Stephen P. Bidey ◽  
Nicholas J. Marshall ◽  
Roger P. Ekins

Abstract. The cyclic AMP response to thyrotrophin (TSH) has been investigated in cells prepared from human thyroid tissue obtained during surgery for sub-total laryngectomy, and maintained under in vitro conditions as primary monolayer cultures. When cells were incubated with 1.0 mU TSH/ml, a maximal level of intracellular cyclic AMP was reached after 20 min of incubation in the presence of 0.5 mm 3-isobutyl-1-methyl xanthine (MIX). This level of cyclic AMP was sustained for at least 2 h. Half-maximal stimulation of cyclic AMP was produced by TSH doses of between 1 and 5 mU/ml. In a study of a series of eight groups of monolayer cultures, each derived from a single, different thyroid gland, the mean stimulation of cyclic AMP given by 50 mU TSH/ml was 37.8-fold greater than in non-stimulated cell monolayers. Significant stimulation to 50 μU TSH/ml was observed in some monolayers and the precision of measurement of TSH was better than 15% over the TSH dose range 0.2–1.0 mU/ml. The magnitude of the cyclic AMP response to TSH was unaffected by the presence in the incubation medium of 20% (v/v) normal human serum. A cyclic AMP response to TSH was still demonstrable in cells that had been maintained for a period of 22 days in monolayer culture, although the response was reduced in comparison with that given by 4–5 day old cultures.


1980 ◽  
Vol 95 (3) ◽  
pp. 335-340 ◽  
Author(s):  
Stephen P. Bidey ◽  
Nicholas J. Marshall ◽  
Roger P. Ekins

Abstract. Slice preparations of normal human thyroid tissue were incubated in vitro with TSH. The cyclic AMP contents of slices were determined at intervals up to 120 min, and cyclic AMP in the incubation medium was also estimated for each incubation period. Slice cyclic AMP levels were related both to incubation time and TSH dose. In response to 10 mU TSH/ml, slice cyclic AMP levels were maximal within 60 min, and were not significantly changed at 120 min. Cyclic AMP was detectable in the medium within 10 min of slice exposure to TSH, and increased throughout the initial 60 min of incubation. Cyclic AMP release during this period was dependent on both TSH dose and incubation time. Between 60–120 min, however, cyclic AMP release partially lost its TSH dose-dependency, and 0.5–5.0 mU TSH/ml were equipotent with respect to the final medium cyclic AMP level attained. Slices incubated without TSH released only small amounts of cyclic AMP, and maximal levels were attained within 20 min. In contrast to the adenylate cyclase response of thyroid membrane preparations, which was stimulated by NaF, suggesting that cyclic AMP release was not a result of the stimulation of damaged cells. These findings demonstrate the importance of cyclic AMP release from human thyroid slices, following in vitro exposure to TSH, and suggest that, after incubation periods such as are used for the functional biodetection of thyroid stimulators, the magnitude of cyclic AMP release may be of quantitative significance.


1976 ◽  
Vol 50 (2) ◽  
pp. 29P-30P
Author(s):  
S. P. Bidey ◽  
P. Marsden ◽  
C. G. McKerron ◽  
J. Anderson

1984 ◽  
Vol 101 (3) ◽  
pp. 269-NP ◽  
Author(s):  
S. P. Bidey ◽  
L. Chiovato ◽  
A. Day ◽  
M. Turmaine ◽  
R. P. Gould ◽  
...  

ABSTRACT The cyclic AMP response to bovine TSH was characterized in a strain of rat thyroid follicular cells (FRTL-5) maintained in continuous culture. Significant stimulation of intracellular cyclic AMP was attained at a TSH dose of 5 μu./ml. Cyclic AMP accumulation continued to increase, at higher TSH doses, with no evidence for attainment of a maximum level at the highest dose tested (5 mu./ml). The precision of TSH measurement was better than 10% over the range 50–5000 μu./ml, comparing favourably with that observed with analogous assays based on human cells, tissue slices or membrane preparations. Using sequential subcultures of FRTL-5 cells, the between-assay variation in response to a single dose of a standard preparation of bovine TSH (53/11; 370 μu./ml) was of the order of 20% which compared favourably with the between-assay variation observed with different cultures of human thyroid cells. Prolongation of the incubation of FRTL-5 cells with TSH to 3 h revealed a progressive increase in the extracellular accumulation of cyclic AMP. Addition of TSH to resting FRTL-5 cells resulted in a stimulation of inorganic iodide uptake with pronounced bell-shaped dose–response characteristics. Thus a maximum uptake was observed at a TSH dose of 100 μu./ml with a significant reduction at higher doses. Acute stimulation of cells with TSH (100 μu./ml) resulted in a rapid and marked alteration in cell morphology, with evidence of cellular retraction and surface ruffling. J. Endocr. (1984) 101, 269–276


1997 ◽  
Vol 25 (2) ◽  
pp. 153-160
Author(s):  
Francesca Mattioli ◽  
Marianna Angiola ◽  
Laura Fazzuoli ◽  
Francesco Razzetta ◽  
Antonietta Martelli

Although primary cultures of human thyroid cells are used for endocrinological and toxicological studies, until now no attention has been paid toward verifying whether the hormonal conditions to which the gland was exposed in vivo prior to surgery could influence in vitro responses. Our findings suggest that the hormonal situation in vivo cannot be used as a predictive indicator of triiodothyronine and thyroxine release and/or S-phase frequency in vitro, either with or without the addition of bovine thyrotropin.


2008 ◽  
Vol 198 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Ling Jin ◽  
Vanessa Chico-Galdo ◽  
Claude Massart ◽  
Christine Gervy ◽  
Viviane De Maertelaere ◽  
...  

Chronic administration of acrylamide has been shown to induce thyroid tumors in rat. In vitro acrylamide also causes DNA damage, as demonstrated by the comet assay, in various types of cells including human thyroid cells and lymphocytes, as well as rat thyroid cell lines. In this work, mice were administered acrylamide in their drinking water in doses comparable with those used in rats, i.e., around 3–4 mg/kg per day for mice treated 2, 6, and 8 months. Some of the mice were also treated with thyroxine (T4) to depress the activity of the thyroid. Others were treated with methimazole that inhibits thyroid hormone synthesis and consequently secretion and thus induces TSH secretion and thyroid activation. These moderate treatments were shown to have their known effect on the thyroid (e.g. thyroid hormone and thyrotropin serum levels, thyroid gland morphology…). Besides, T4 induced an important polydipsia and degenerative hypertrophy of adrenal medulla. Acrylamide exerted various discrete effects and at high doses caused peripheral neuropathy, as demonstrated by hind-leg paralysis. However, it did not induce thyroid tumorigenesis. These results show that the thyroid tumorigenic effects of acrylamide are not observed in another rodent species, the mouse, and suggest the necessity of an epidemiological study in human to conclude on a public health policy.


Thyroid ◽  
2000 ◽  
Vol 10 (11) ◽  
pp. 939-943 ◽  
Author(s):  
Jan W.A. Smit ◽  
Janny P. Schröder-van der Elst ◽  
Marcel Karperien ◽  
Ivo Que ◽  
Gabri van der Pluijm ◽  
...  

1988 ◽  
Vol 119 (2) ◽  
pp. 341-349 ◽  
Author(s):  
Z. Kraiem ◽  
R. Alkobi ◽  
O. Sadeh

ABSTRACT Using an in-vitro system of cultured human thyroid cells and cyclic AMP (cAMP) accumulation as an index of cell stimulation, we compared TSH and thyroid-stimulating immunoglobulin (TSI) with regard to thyrocyte sensitization and desensitization. The smallest dose of TSH (0·05 mU/ml) capable of stimulating thyroid cells was the same as the minimum dose required to induce desensitization upon subsequent rechallenge with the hormone. In contrast, about 30-fold higher doses of TSI were needed to cause cell refractoriness compared with doses capable of eliciting stimulation. Moreover, significant stimulation of the thyroid with TSI was apparent much later than with TSH. A longer time-lapse was also necessary for TSI to induce densensitization. Likewise, thyrocytes recovered more slowly from TSI compared with TSH desensitization. Although at high doses TSI induced homologous desensitization, at lower doses the antibody, unlike TSH, potentiated the cAMP response to subsequent exposure to the antibody. The stimulatory doses of TSI were in the range usually encountered in active Graves' disease, which may explain why prolonged TSI in vivo sustains a hyperthyroid condition. In addition, we found that under conditions in which TSH leads to desensitization of the cAMP response, the thyroid cells maintained their responsiveness in terms of triiodothyronine secretory activity. Pre-exposure of human thyrocytes to TSI induced heterologous desensitization towards the TSH-stimulated cAMP response. Moreover, addition of the antibody to maximally desensitizing doses of TSH decreased cell sensitivity to the hormone even further. In sharp contrast, preincubation of cells with TSH, or TSH plus TSI, potentiated by four- and twofold respectively the cAMP response to subsequent challenge with TSI. Taken together, the data reveal marked differences between the action of TSH and TSI, and raise interesting questions concerning the mechanism whereby TSH potentiates the cAMP response to TSI. J. Endocr. (1988) 119, 341–349


Sign in / Sign up

Export Citation Format

Share Document