INHIBITION BY MELATONIN OF THE PITUITARY RESPONSE TO LUTEINIZING HORMONE RELEASING HORMONE IN VIVO

1978 ◽  
Vol 76 (3) ◽  
pp. 487-491 ◽  
Author(s):  
K. YAMASHITA ◽  
M. MIENO ◽  
T. SHIMIZU ◽  
ER. YAMASHITA

The rate of secretion of 17-oxosteroids by the testes of anaesthetized dogs in vivo was used as an index of LH secretion. Intracarotid injection of luteinizing hormone releasing hormone (LH-RH, 1, 5 or 10 μg/kg body wt) resulted in an increase in the testicular 17-oxosteroid secretion which was roughly proportional to the dose administered and which reached a maximum 60 min after the injection. Testicular output of 17-oxosteroids was unaffected by administration of melatonin (10 or 100 μg/kg body wt) into the carotid artery. When LH-RH (5 μg/kg) was injected into the carotid artery 3 h after intracarotid injection of melatonin (10 or 100 μg/kg), the testicular response to LH-RH was considerably diminished. Pretreatment with melatonin (100 μg/kg) did not alter the testicular response to human chorionic gonadotrophin (20 i.u./kg body wt) given i.v. It is concluded that melatonin may act directly on the anterior pituitary gland in dogs to inhibit the LH-RH-induced release of LH.

1979 ◽  
Vol 80 (1) ◽  
pp. 141-152 ◽  
Author(s):  
A. D. SWIFT ◽  
D. B. CRIGHTON

The abilities of three nonapeptide analogues of synthetic luteinizing hormone releasing hormone (LH-RH) to release luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anoestrous and cyclic ewes were examined, as were their elimination from the plasma in vivo and degradation by extracts of the hypothalamus, anterior pituitary gland, lung, kidney, liver and plasma in vitro. In all cases, comparisons were made with synthetic LH-RH. When injected i.v. into mature ewes as a single dose, the potencies of the analogues were graded and Des Gly-NH210 LH-RH ethylamide was found to be the least potent. It was not possible to demonstrate any significant increase in the potency of this analogue over LH-RH, although a trend was apparent with each parameter examined. [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide had the greatest potency. There were no differences between the responses of anoestrous ewes and those of ewes treated on day 10 of the oestrous cycle. None of the analogues had a rate of elimination from the plasma different from that of LH-RH during either the first or the second components of the biphasic disappearance curve. The incubation of LH-RH with tissue extracts showed that extracts of the hypothalamus and anterior pituitary gland degraded LH-RH to a similar extent. Both the hypothalamic and anterior pituitary gland extracts degraded more LH-RH than did lung extract, which in turn destroyed more LH-RH than did extracts of kidney or liver tissue. The degradative abilities of kidney and liver extracts did not differ from each other. Plasma failed to degrade LH-RH or the analogues. Although LH-RH was rapidly destroyed by hypothalamic extract in vitro, of the analogues, only Des Gly-NH210 LH-RH ethylamide was degraded. The anterior pituitary gland and kidney extracts failed to degrade [d-Ser6] Des Gly-NH210 LH-RH ethylamide and [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide as rapidly as LH-RH. Extracts of liver and lung were incapable of catabolizing any of the analogues. There was an inverse correlation between the LH- and FSH-releasing potency of an analogue and its rate of degradation by anterior pituitary gland extract. The slower rates of catabolism of certain analogues of LH-RH by the anterior pituitary gland may explain their increased LH- and FSH-releasing potency.


1980 ◽  
Vol 84 (3) ◽  
pp. 449-452 ◽  
Author(s):  
K. YAMASHITA ◽  
M. MIENO ◽  
ER. YAMASHITA

Arginine-vasotocin (0·1 or 10 ng/kg body wt) was administered into the carotid artery of anaesthetized immature male dogs 3 h before the administration of a standard dose of luteinizing hormone releasing hormone (LH-RH, 5 μg/kg body wt) into the same vessel. The rate of secretion of 17-oxosteroids by the testes in vivo served as an index of luteinizing hormone (LH) secretion. The administration of LH-RH into the carotid artery of control dogs which had been injected with isotonic saline caused a slight but definite increase in the secretion of testicular 17-oxosteroids. This effect of LH-RH on the testicular secretion of steroids was markedly reduced by pretreatment with arginine-vasotocin. However, the testicular response to the i.v. administration of human chorionic gonadotrophin (5 i.u./kg body wt) was unaffected by pretreatment with arginine-vasotocin (10 ng/kg body wt). These results indicate that in immature male dogs, arginine-vasotocin is able to inhibit the action of LH-RH by acting directly on the anterior pituitary gland.


1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


1979 ◽  
Vol 81 (2) ◽  
pp. 175-182 ◽  
Author(s):  
J. SANDOW ◽  
W. KÖNIG

The minimal structural requirements for gonadotrophin releasing activity were studied with fragments of a highly active analogue of luteinizing hormone releasing hormone (LH-RH), [d-Ser(But)6]LH-RH(1–9)nonapeptide-ethylamide (Hoe 766). All fragments are related to the C-terminal structure of LH-RH and have increased enzyme stability. Ovulation in phenobarbitone-blocked rats was induced with a median effective dose/rat, of 1·9 μg of the (3–9)-heptapeptide, Trp-Ser-Tyr-d-Ser(But)-Leu-Arg-Pro-ethylamide and 6·8, 18·0 and 38·3 μg for the (4–9), (5–9) and (6–9) fragments respectively. The (3–9)-heptapeptide and (4–9)-hexapeptide induced release of LH and FSH in phenobarbitone-blocked rats with a ratio similar to that of LH-RH. Degradation of LH-RH by enzyme preparations of liver, kidney and hypothalamic or anterior pituitary tissue was not modified by addition of the (3–9)-heptapeptide fragment. The organ distribution of the 125I-labelled (3–9)-heptapeptide fragments was similar to LH-RH, but not to Hoe 766. The peptide accumulated in liver and kidney, but was eliminated from the anterior pituitary gland 15 min after i.v. injection, whereas Hoe 766 showed progressive accumulation in the pituitary gland (tissue: plasma ratio = 6·6 after 60 min). In contrast to C-terminal fragments of LH-RH, the corresponding fragments of nonapeptide analogues retained significant biological activity, and the minimal structural requirements for LH release may be related to the C-terminal sequence of LH-RH.


1981 ◽  
Vol 90 (3) ◽  
pp. 433-436 ◽  
Author(s):  
S. FRANKS ◽  
G. R. MERRIAM ◽  
CYNTHIA G. GOODYER ◽  
F. NAFTOLIN

We have examined the effects of the catechol oestrogens 2-hydroxyoestradiol (2-OHE2), 4-hydroxyoestradiol (4-OHE2) and 2-hydroxyoestrone (2-OHE1) and their corresponding primary oestrogens on secretion of LH and FSH by enzymatically dispersed rat anterior pituitary cells in monolayer culture. Basal LH levels in the medium were significantly higher than in control wells when cells were exposed to 10−8m-oestradiol-17β for 40 h: oestrone and all three catechol oestrogens (in the same doses) also stimulated basal LH concentrations to levels quantitatively similar to those seen after oestradiol treatment. The same effects were observed when steroids were given at 10−9 mol/l. Oestradiol, 2-OHE2, and 4-OHE2 but not 2-OHE1 increased pituitary responsiveness to LH releasing hormone (LH-RH) (given in a range of doses from 10−11 to 10−6 mol/l). The responses of cells treated with 2-OHE2 and 4-OHE2 were similar, though less than the response seen after treatment with oestradiol. This contrasts with the very different oestrogenic effects of 2- and 4-OHE2 previously observed in vivo. Neither oestradiol nor the catechol oestrogens had any effect on basal or LH-RH-stimulated FSH release.


1977 ◽  
Vol 75 (2) ◽  
pp. 277-283 ◽  
Author(s):  
N. BARDEN ◽  
A. BETTERIDGE

The addition of luteinizing hormone releasing hormone (LH-RH) to cultures of monolayers of rat anterior pituitary cells was shown to increase both the concentrations of prostaglandins E1 and E2 (PGE) in the cells and the release of LH over similar ranges of concentrations of LH-RH (10−6 to 10−10 mol/l). The peak concentration of PGE was observed after 2·5 h. The stimulation of the level of PGE in the cells by LH-RH was completely inhibited by two inhibitors of prostaglandin synthetase, which only partially inhibited the stimulation of LH release. Therefore the increased concentration of PGE was not obligatory for the effect of LH-RH on LH release. It was also shown that monobutyryl cyclic AMP stimulated the intracellular concentration of PGE and it is suggested that the stimulation of PGE levels may be mediated by increased levels of cyclic AMP in the cells after the addition of LH-RH.


Sign in / Sign up

Export Citation Format

Share Document