POSSIBLE PRIMING EFFECT OF LUTEINIZING HORMONE RELEASING HORMONE ON THE ANTERIOR PITUITARY GLAND IN THE JAPANESE QUAIL AND THE STIMULATION OF SECRETION OF FOLLICLE-STIMULATING HORMONE

1979 ◽  
Vol 82 (1) ◽  
pp. 71-75 ◽  
Author(s):  
D. T. DAVIES ◽  
J. COLLINS

SUMMARY After the i.m. injection of 10 μg synthetic LH releasing hormone (LH-RH) into Japanese quail the levels of LH and FSH in plasma rose significantly within 2 min. The increased level of LH declined rapidly but that of FSH was maintained for the duration of the experiment. To determine whether the anterior pituitary gland is primed by LH-RH a double injection schedule was adopted. It would appear that, while endogenous LH-RH may prime the avian pituitary gland slightly, synthetic LH-RH is ineffective.

1980 ◽  
Vol 85 (1) ◽  
pp. 105-110 ◽  
Author(s):  
CAROL A. IDDON ◽  
H. M. CHARLTON ◽  
G. FINK

SUMMARY Electrical stimulation of the median eminence, using parameters known to cause the release of LH in normal male mice, failed to elicit any gonadotrophin response in hypogonadal (hpg) male mice. Administration of 40 ng synthetic LH releasing hormone (LH-RH) resulted in release of LH from the pituitary gland of hpg mice, although the response was significantly lower than that of normal mice. These results were consistent with the hypothesis that the hypogonadal state of the hpg mouse results from a functional absence of LH-RH in the hypothalamus rather than from a lack of response of the pituitary gland to the releasing hormone.


1979 ◽  
Vol 80 (1) ◽  
pp. 141-152 ◽  
Author(s):  
A. D. SWIFT ◽  
D. B. CRIGHTON

The abilities of three nonapeptide analogues of synthetic luteinizing hormone releasing hormone (LH-RH) to release luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anoestrous and cyclic ewes were examined, as were their elimination from the plasma in vivo and degradation by extracts of the hypothalamus, anterior pituitary gland, lung, kidney, liver and plasma in vitro. In all cases, comparisons were made with synthetic LH-RH. When injected i.v. into mature ewes as a single dose, the potencies of the analogues were graded and Des Gly-NH210 LH-RH ethylamide was found to be the least potent. It was not possible to demonstrate any significant increase in the potency of this analogue over LH-RH, although a trend was apparent with each parameter examined. [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide had the greatest potency. There were no differences between the responses of anoestrous ewes and those of ewes treated on day 10 of the oestrous cycle. None of the analogues had a rate of elimination from the plasma different from that of LH-RH during either the first or the second components of the biphasic disappearance curve. The incubation of LH-RH with tissue extracts showed that extracts of the hypothalamus and anterior pituitary gland degraded LH-RH to a similar extent. Both the hypothalamic and anterior pituitary gland extracts degraded more LH-RH than did lung extract, which in turn destroyed more LH-RH than did extracts of kidney or liver tissue. The degradative abilities of kidney and liver extracts did not differ from each other. Plasma failed to degrade LH-RH or the analogues. Although LH-RH was rapidly destroyed by hypothalamic extract in vitro, of the analogues, only Des Gly-NH210 LH-RH ethylamide was degraded. The anterior pituitary gland and kidney extracts failed to degrade [d-Ser6] Des Gly-NH210 LH-RH ethylamide and [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide as rapidly as LH-RH. Extracts of liver and lung were incapable of catabolizing any of the analogues. There was an inverse correlation between the LH- and FSH-releasing potency of an analogue and its rate of degradation by anterior pituitary gland extract. The slower rates of catabolism of certain analogues of LH-RH by the anterior pituitary gland may explain their increased LH- and FSH-releasing potency.


1981 ◽  
Vol 91 (2) ◽  
pp. 347-351 ◽  
Author(s):  
R. MEIDAN ◽  
G. FINK ◽  
Y. KOCH

The ontogeny of the facilitatory effect of oestradiol and luteinizing hormone releasing hormone (LH-RH) on the responsiveness of the anterior pituitary gland to LH-RH has been studied in vitro using pituitary glands from female rats aged 15, 17, 20, 31, 35 and 38 days. The facilitatory effect of oestradiol was already well established by day 15, while the facilitatory effect of LH-RH (priming effect) developed only after day 17. Although it increased the overall response of the gland to LH-RH, oestradiol did not selectively enhance the priming effect of LH-RH. Both the effect of oestradiol and LH-RH reached a peak on day 25, 7 days before vaginal opening in this colony, and, as assessed by measuring pituitary LH contents, were not dependent upon the synthesis of LH. These data show that different mechanisms may be involved in the facilitation of pituitary responsiveness by oestradiol and LH-RH, but that both mechanisms appear to depend more upon an increase in the sensitivity of the receptor/release apparatus rather than in the gonadotrophin content of the gonadotrophs.


1981 ◽  
Vol 90 (3) ◽  
pp. 345-354 ◽  
Author(s):  
KATHLEEN A. ELIAS ◽  
C. A. BLAKE

Changes at the anterior pituitary and/or hypothalamic levels which result in selective FSH release during late pro-oestrus in the cyclic rat were investigated. The possible involvement of decreasing serum concentrations of oestrogen during pro-oestrus in such changes was studied. Rats were decapitated at 12.00 h on pro-oestrus, before the onset of the LH surge and first phase of FSH release, or at 24.00 h on pro-oestrus, shortly after the onset of the second or selective phase of FSH release. Other rats were given oestrogen (OE2) at 14.00 h and killed at 24.00 h pro-oestrus. Paired hemi-anterior pituitary glands were incubated with vehicle or OE2 with or without synthetic LH-releasing hormone (LH-RH) or hypothalamic acid extracts prepared from rats killed at 12.00 or 24.00 h on pro-oestrus. At 24.00 h pro-oestrus, serum FSH concentration was high while serum LH concentration was low regardless of whether rats were given OE2. Glands collected and incubated at 24.00 h released more FSH and less LH than did glands collected and incubated at 12.00 h pro-oestrus. Administration of OE2 in vivo and/or in vitro did not affect these responses. The increments in LH and FSH release attributed to LH-RH or hypothalamic extracts in the glands incubated at 24.00 h were not different from those of the glands incubated at 12.00 h. Also, the hypothalamic extracts prepared from rats killed at 24.00 h were no more effective than the extracts prepared from rats killed at 12.00 h in releasing LH or FSH from glands incubated at 12.00 or 24.00 h pro-oestrus. Administration of OE2 in vivo caused a small suppression of LH-RH-induced FSH release. We suggest that a change occurs at the level of the anterior pituitary gland during the period of the LH surge and first phase of FSH release to increase basal FSH secretion selectively and cause, at least in part, the second phase of increased serum FSH. This change is not mediated by a decrease in serum oestrogen concentration. We failed to observe any evidence that LH-RH causes preferential FSH release during late pro-oestrus or that a hypothalamic peptide with a preferential FSH releasing ability is involved in FSH release at this time.


1984 ◽  
Vol 103 (3) ◽  
pp. 371-376 ◽  
Author(s):  
M. J. D'Occhio ◽  
B. P. Setchell

ABSTRACT The capacity of the anterior pituitary gland and testes in mature bulls (705±9 (s.e.m.) kg body wt, n = 4) to respond to graded doses of LH-releasing hormone (LHRH) was assessed relative to endogenous profiles of LH and testosterone secretion. Endogenous hormone profiles were determined by bleeding bulls at 20-min intervals for 12 h. Responses to LHRH were assessed on successive days after single intravenous injections of 1, 5, 10, 50 or 100 ng LHRH/kg body wt. Blood samples were taken at −40, −20, 0, 10, 20, 30, 40, 60 and 120 min relative to LHRH injection. During a 12-h bleed bulls showed spontaneous pulses of LH and testosterone which had peak amplitudes of 2·6±0·5 μg/l and 44·5 ± 7·1 nmol/l respectively. Respective peak LH (μg/l) and testosterone (nmol/l) responses to LVRH were as follows: 1 ng LHRH (3·0±0·7: 47·3±4·1); 5 ng LHRH (8·0±1·2; 52·8 ± 6·2); 10 ng LHRH (11·1±2·3; 57·7 ± 9·1); 50 ng LHRH (19·2±2·8; 47·9±8·6); 100 ng LHRH (19·1±4·7; 43·9 ±6·4). A dose of 1 ng LHRH/kg produced LH and testosterone responses which were comparable in amplitude to spontaneous peaks in the respective hormone. There was a linear (y = 0·28x+5·72; r = 0·81) increase in the LH response to doses of LVRH between 1 and 50 ng/kg; corresponding testosterone responses showed no relationship with the dose of LHRH. The capacity of the anterior pituitary gland to release amounts of LH eight to ten times in excess of those secreted during spontaneous peaks suggests that (1) there exists a large releasable store of LH in the anterior pituitary gland and (2) hypothalamic LHRH is a limiting factor in gonadotrophin secretion. In contrast to LH release, the androgenic response of the testes to acute gonadotrophic stimulation is determined largely by prevailing steroidogenic activity. J. Endocr. (1984) 103, 371–376


1979 ◽  
Vol 81 (2) ◽  
pp. 175-182 ◽  
Author(s):  
J. SANDOW ◽  
W. KÖNIG

The minimal structural requirements for gonadotrophin releasing activity were studied with fragments of a highly active analogue of luteinizing hormone releasing hormone (LH-RH), [d-Ser(But)6]LH-RH(1–9)nonapeptide-ethylamide (Hoe 766). All fragments are related to the C-terminal structure of LH-RH and have increased enzyme stability. Ovulation in phenobarbitone-blocked rats was induced with a median effective dose/rat, of 1·9 μg of the (3–9)-heptapeptide, Trp-Ser-Tyr-d-Ser(But)-Leu-Arg-Pro-ethylamide and 6·8, 18·0 and 38·3 μg for the (4–9), (5–9) and (6–9) fragments respectively. The (3–9)-heptapeptide and (4–9)-hexapeptide induced release of LH and FSH in phenobarbitone-blocked rats with a ratio similar to that of LH-RH. Degradation of LH-RH by enzyme preparations of liver, kidney and hypothalamic or anterior pituitary tissue was not modified by addition of the (3–9)-heptapeptide fragment. The organ distribution of the 125I-labelled (3–9)-heptapeptide fragments was similar to LH-RH, but not to Hoe 766. The peptide accumulated in liver and kidney, but was eliminated from the anterior pituitary gland 15 min after i.v. injection, whereas Hoe 766 showed progressive accumulation in the pituitary gland (tissue: plasma ratio = 6·6 after 60 min). In contrast to C-terminal fragments of LH-RH, the corresponding fragments of nonapeptide analogues retained significant biological activity, and the minimal structural requirements for LH release may be related to the C-terminal sequence of LH-RH.


Sign in / Sign up

Export Citation Format

Share Document