Acetylcholine stimulates steroidogenesis in isolated frog adrenal gland through muscarinic receptors: evidence for a desensitization mechanism

1987 ◽  
Vol 113 (3) ◽  
pp. 339-348 ◽  
Author(s):  
M. Benyamina ◽  
F. Leboulenger ◽  
I. Lirhmann ◽  
C. Delarue ◽  
M. Feuilloley ◽  
...  

ABSTRACT The effect of cholinergic agonists on glucocorticoid and mineralocorticoid production by frog interrenal (adrenal) tissue was studied in vitro by means of continuous perifusion. Acetylcholine, at doses ranging from 1 to 100 μmol/l, stimulated both corticosterone and aldosterone output in a dose-dependent manner, with a half-maximal effective dose of 2·5 μmol/l. Corticosteroid production was also stimulated by muscarine (10 μmol/l). In contrast, neither nicotine nor nicotine bitartrate (1–100 μmol/l) enhanced corticosteroid biosynthesis. The kinetics of the response of adrenal cells to acetylcholine and muscarine were similar to those observed during angiotensin II stimulation. In particular, a significant reduction (20–40%) in the spontaneous level of corticosteroid production was recorded after the initial infusion of muscarinic agents, but no further decrease in the basal level occurred after a second cholinergic administration. The effect of acetylcholine was blocked by the muscarinic receptor antagonist atropine (10 μmol/l). These results indicate that acetylcholine can stimulate frog adrenocortical cells through muscarinic receptors. Repeated 20-min pulses of acetylcholine (50 μmol/l) or muscarine (10 μmol/l), given at one pulse per 130 min, resulted in a marked reduction in the secretory response to the second pulse. No reduction in the stimulatory effect of acetylcholine or muscarine was observed when a 6·5-h interval separated two 20-min infusions of the secretagogue. In contrast with these findings, iterative pulses of the muscarinic agonist pilocarpine (in the range 1–100 μmol/l) did not cause any desensitization. These data show that the neurotransmitter acetylcholine can modulate frog adrenocortical function and suggest that, in addition to more conventional regulators, i.e. ACTH and angiotensin II, the cholinergic endings of the splanchnic nerve might participate in the regulation of corticosteroid secretion, at least under some physiological conditions such as neurogenic stress. J. Endocr. (1987) 113, 339–348

1990 ◽  
Vol 5 (1) ◽  
pp. 55-60 ◽  
Author(s):  
L. B. O'Toole ◽  
K.J. Armour ◽  
C. Decourt ◽  
N. Hazon ◽  
B. Lahlou ◽  
...  

ABSTRACT An isolated in-vitro perifused interrenal gland preparation from the dogfish Scyliorhinus canicula was used to study production of quantitatively the major corticosteroid 1α-hydroxycorticosterone (1α-OH-B), measured by radioimmunoassay. Basal secretory rates were 877·1 ± 145 (s.e.m.) fmol/mg per 15 min (n=14) and the preparation remained viable for up to 22 h, as reflected in a brisk response to 10 μm cyclic AMP (cAMP) after this time. Steroid production responded in a dose-dependent manner to porcine ACTH, with 10 μm producing a maximum stimulation of 225% above the basal secretory rate. cAMP (10 μm) produced an increase of 278% above basal, while 1 μm forskolin increased basal secretory rates by 127%. [Val5]- and [Ile5]-angiotensin II (0·1 μm) increased 1α-OH-B production by 120 and 372% respectively over basal secretory rates. Increasing the concentration of K+ in the perfusate from 8 mm to 12, 18, 28 and 40 mm produced a significant rise only at 28 mm. Alterations in the concentration of Na+ and osmolarity of the perifusion medium had inconsistent effects on steroid production. Increased concentrations of urea (from 360 to 720 mm) increased the basal secretory rate by 121%, whilst reducing the concentration of urea (from 360 to 90 mm) had no effect.


1985 ◽  
Vol 104 (3) ◽  
pp. 387-395 ◽  
Author(s):  
J. P. Hinson ◽  
G. P. Vinson ◽  
B. J. Whitehouse ◽  
G. Price

ABSTRACT The extent to which results obtained using in-vitro techniques can be taken to reflect in-vivo physiological responses in the study of adrenocortical function has not been subjected to systematic study. Some evidence suggests that in-vitro preparative methods may affect the secreted steroid profile. For this reason it seemed desirable to study adrenal function using an isolated perfused whole gland technique, and this study reports results obtained with known aldosterone stimulants. Angiotensin II, ACTH and potassium ions all stimulated aldosterone secretion in a dose-dependent manner. The stimulation thresholds of these substances were compatible with their normal circulating concentrations. For angiotensin II stimulation this preparation was two orders of magnitude more sensitive than any in-vitro preparation. Most importantly, the specific glomerulosa effectors, angiotensin II and potassium, selectively stimulated aldosterone output, and had no consistent effect on corticosterone secretion at any dose used. On the other hand, ACTH stimulated both corticosterone and aldosterone output at all effective concentrations. The actions of α-MSH were also studied using this preparation. Low doses of α-MSH selectively stimulated aldosterone secretion, while higher doses were needed to stimulate corticosterone. The onset of response to all stimulants was invariably seen within the first 10 min after administration of stimulants. Maximal aldosterone output was achieved within the first 10 min whereas corticosterone secretion usually peaked 10–20 min later. The amount of aldosterone produced by this preparation was much higher than the amount produced by dispersed cell preparations, and closely approximated to the levels of aldosterone obtained in adrenal vein blood. The data indicate that the isolated circulation perfused gland system is a sensitive preparation which approximates to the physiological condition. In particular, aldosterone is the prominent glomerulosa product, and corticosterone is, in this system, a more specific marker for inner zone function. J. Endocr. (1985) 104, 387–395


Parasitology ◽  
2007 ◽  
Vol 134 (9) ◽  
pp. 1253-1262 ◽  
Author(s):  
S. BRUNET ◽  
J. AUFRERE ◽  
F. El BABILI ◽  
I. FOURASTE ◽  
H. HOSTE

SUMMARYThe mode of action of bioactive plants on gastrointestinal nematodes remains obscure. Previous in vitro studies showed that exsheathment was significantly disturbed after contact with tannin-rich extracts. However, the role of important factors (extract concentration, parasite species) has not been assessed and no information is available on the occurrence in vivo. These questions represent the objectives of this study. The model incorporated the parasites Haemonchus contortus and Trichostrongylus colubriformis with sainfoin as the bioactive plant. A set of in vitro assays was performed, measuring the changes observed, after 3 h of contact with increasing concentrations of sainfoin, on the rate of artificial exsheathment. The results indicated that sainfoin extracts interfered with exsheathment in a dose-dependent manner and the process overall was similar for both nematodes. The restoration of control values observed after adding PEG to extracts confirms a major role for tannins. A second study was performed in vivo on rumen-cannulated sheep fed with different proportions of sainfoin in the diet to verify these in vitro results. The consumption of a higher proportion of sainfoin was indeed associated with significant delays in Haemonchus exsheathment. Overall, the results confirmed that interference with the early step of nematode infection might be one of the modes of action that contributes to the anthelmintic properties of tanniniferous plants.


1998 ◽  
Vol 158 (2) ◽  
pp. 197-203 ◽  
Author(s):  
CB Cymeryng ◽  
LA Dada ◽  
EJ Podesta

The present study was designed to investigate the role of nitric oxide (NO) in the regulation of adrenocortical function. Different NO donors, such as sodium nitroprusside (SNP), S-nitroso-L-acetyl penicillamine, diethylamine/NO complex sodium salt and diethylenetriamine NO adduct, significantly decreased corticosterone production both in unstimulated and in corticotropin-stimulated zone fasciculata adrenal cells, in a dose-dependent manner. The effect of SNP was reversed by ferrous hemoglobin. A selective inhibitor of NO synthase, L-NG-nitro-arginine significantly increased corticosterone secretion. The effect of SNP was not mediated by cGMP as permeable cGMP analogs did not reproduce its inhibitory effect. SNP significantly inhibited the steroidogenesis stimulated by 8Br-cAMP and 22(R)-OH-cholesterol, but was ineffective when corticosterone was produced in the presence of exogenously added pregnenolone. Moreover, the conversion of [3H]cholesterol to [3H]pregnenolone and the production of pregnenolone or progesterone (assessed by RIA) were significantly decreased by SNP. Taken together, these results suggest that NO may be a negative modulator of adrenal zona fasciculata steroidogenesis.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Sun ◽  
Yongsen Wang ◽  
Xueqi Fu ◽  
Yingli Chen ◽  
Deli Wang ◽  
...  

Protein tyrosine phosphatase 1B (PTP1B) is an established therapeutic target for type 2 diabetes mellitus (T2DM) and obesity. The aim of this study was to investigate the inhibitory activity ofMagnolia officinalisextract (ME) on PTP1B and its anti-T2DM effects. Inhibition assays and inhibition kinetics of ME were performedin vitro. 3T3-L1 adipocytes and C2C12 myotubes were stimulated with ME to explore its bioavailability in cell level. Thein vivostudies were performed on db/db mice to probe its anti-T2DM effects. In the present study, ME inhibited PTP1B in a reversible competitive manner and displayed good selectivity against PTPsin vitro. Furthermore, ME enhanced tyrosine phosphorylation levels of cellular proteins, especially the insulin-induced tyrosine phosphorylations of insulin receptorβ-subunit (IRβ) and ERK1/2 in a dose-dependent manner in stimulated 3T3-L1 adipocytes and C2C12 myotubes. Meanwhile, ME enhanced insulin-stimulated GLUT4 translocation. More importantly, there was a significant decrease in fasting plasma glucose level of db/db diabetic mice treated orally with 0.5 g/kg ME for 4 weeks. These findings indicated that improvement of insulin sensitivity and hypoglycemic effects of ME may be attributed to the inhibition of PTP1B. Thereby, we pioneered the inhibitory potential of ME targeted on PTP1B as anti-T2DM drug discovery.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


This trial research was performed to discuss the immune-influence of Melaleuca leucadendra ‘paper-bark tree’ dried leaves which is an important medical plant known in many regions in the world. The leaves were dissolved in a mixture of (ethanol + water) (3:1) mixture, then filtered, evaporated and dried under reduced pressure to obtain leaves extract. The macrophages of blood derived origin were provided from rats and mixed with three different leaves extracts doses in tissue culture plates and incubated then stained with fluorescent acridine orange and examined under fluorescent microscope to assess the phagocytic and killing potency. The wells contents were aspirated and assayed for nitric oxide and interleukin-2 levels. The results displayed an obvious increase in phagocytic, killing performance as well as nitric oxide and IL-2 level production than control in a dose dependent manner. The obtained results suggested the immune-stimulant impact of the paper-bark tree leaves.


2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


1997 ◽  
Vol 273 (5) ◽  
pp. E880-E890 ◽  
Author(s):  
Wenhan Chang ◽  
Tsui-Hua Chen ◽  
Stacy A. Pratt ◽  
Benedict Yen ◽  
Michael Fu ◽  
...  

Parathyroid cells express Ca2+-conducting cation currents, which are activated by raising the extracellular Ca2+ concentration ([Ca2+]o) and blocked by dihydropyridines. We found that acetylcholine (ACh) inhibited these currents in a reversible, dose-dependent manner (50% inhibitory concentration ≈10−8 M). The inhibitory effects could be mimicked by the agonist (+)-muscarine. The effects of ACh were blunted by the antagonist atropine and reversed by removing ATP from the pipette solution. (+)-Muscarine enhanced the adenosine 3′,5′-cyclic monophosphate (cAMP) production by 30% but had no effect on inositol phosphate accumulation in parathyroid cells. Oligonucleotide primers, based on sequences of known muscarinic receptors (M1-M5), were used in reverse transcriptase-polymerase chain reaction (RT-PCR) to amplify receptor cDNA from parathyroid poly (A)+ RNA. RT-PCR products displayed >90% nucleotide sequence identity to human M2- and M4-receptor cDNAs. Expression of M2-receptor protein was further confirmed by immunoblotting and immunocytochemistry. Thus parathyroid cells express muscarinic receptors of M2 and possibly M4 subtypes. These receptors may couple to dihydropyridine-sensitive, cation-selective currents through the activation of adenylate cyclase and ATP-dependent pathways in these cells.


Sign in / Sign up

Export Citation Format

Share Document