Appraisal of Immunological Impacts of Melaleuca leucadendra Extract over Macrophage Performance in Vitro

This trial research was performed to discuss the immune-influence of Melaleuca leucadendra ‘paper-bark tree’ dried leaves which is an important medical plant known in many regions in the world. The leaves were dissolved in a mixture of (ethanol + water) (3:1) mixture, then filtered, evaporated and dried under reduced pressure to obtain leaves extract. The macrophages of blood derived origin were provided from rats and mixed with three different leaves extracts doses in tissue culture plates and incubated then stained with fluorescent acridine orange and examined under fluorescent microscope to assess the phagocytic and killing potency. The wells contents were aspirated and assayed for nitric oxide and interleukin-2 levels. The results displayed an obvious increase in phagocytic, killing performance as well as nitric oxide and IL-2 level production than control in a dose dependent manner. The obtained results suggested the immune-stimulant impact of the paper-bark tree leaves.

Endocrinology ◽  
1997 ◽  
Vol 138 (9) ◽  
pp. 3630-3637 ◽  
Author(s):  
Jun Yamauchi ◽  
Toyohiko Miyazaki ◽  
Shinya Iwasaki ◽  
Ikuko Kishi ◽  
Masako Kuroshima ◽  
...  

Abstract Evidence supports the involvement of nitric oxide (NO) in ovarian physiology. The present study was undertaken to investigate the role of the NO/NO synthase (NOS) systems in ovulation, oocyte maturation, ovarian steroidogenesis, and PG production using in vitro perfused rabbit ovaries. The addition of the NOS inhibitors, aminoguanidine hemisulfate salt (AG) and N-omega-nitro-l-arginine methyl ester (L-NAME), to the perfusate inhibited the ovulation induced by hCG in a dose-dependent manner, whereas D-NAME had no significant effect. Neither AG nor L-NAME affected the hCG-induced meiotic maturation of the ovulated ova. The exogenous administration of the NO generator, sodium nitroprusside (NP), induced follicle rupture in the absence of gonadotropin, but did not induce oocyte maturation. Inhibition of endogenous NOS by AG and L-NAME resulted in a significant elevation in the production of estradiol (E2), but not of progesterone, stimulated by hCG. The concomitant administration of NP significantly reduced the AG-stimulated production of E2 by ovaries perfused in the presence of hCG, which suggests that NO down-regulates ovarian E2 synthesis. Ovarian production of PGE2 and PGF2α in response to hCG was significantly blocked by L-NAME, and exogenous administration of NP stimulated the production of PGs in the absence of gonadotropin. Significant correlations were observed between the ovulatory efficiencies and the production of PGs by rabbit ovaries perfused with or without L-NAME. In conclusion, the ovarian NO/NOS system is involved in follicle rupture during the ovulatory process. NO may induce follicle rupture in rabbit ovaries at least in part by the stimulation of PG production.


2000 ◽  
Vol 74 (8) ◽  
pp. 3605-3612 ◽  
Author(s):  
Zheng Xing ◽  
Karel A. Schat

ABSTRACT The replication of Marek's disease herpesvirus (MDV) and herpesvirus of turkeys (HVT) in chicken embryo fibroblast (CEF) cultures was inhibited by the addition ofS-nitroso-N-acetylpenicillamine, a nitric oxide (NO)-generating compound, in a dose-dependent manner. Treatment of CEF culture, prepared from 11-day-old embryos, with recombinant chicken gamma interferon (rChIFN-γ) and lipopolysaccharide (LPS) resulted in production of NO which was suppressed by the addition ofN G-monomethyl l-arginine (NMMA), an inhibitor of inducible NO synthase (iNOS). Incubation of CEF cultures for 72 h prior to treatment with rChIFN-γ plus LPS was required for optimal NO production. Significant differences in NO production were observed in CEF derived from MDV-resistant N2a (major histocompatibility complex [MHC],B 21 B 21) and MDV-susceptible S13 (MHC,B 13 B 13) and P2a (MHC,B 19 B 19) chickens. N2a-derived CEF produced NO earlier and at higher levels than CEF from the other two lines. The lowest production of NO was detected in P2a-derived CEF. NO production in chicken splenocyte cultures followed a similar pattern, with the highest levels of NO produced in cultures from N2a chickens and the lowest levels produced in cultures from P2a chickens. Replication of MDV and HVT was significantly inhibited in CEF cultures treated with rChIFN-γ plus LPS and producing NO. The addition of NMMA to CEF treated with rChIFN-γ plus LPS reduced the inhibition. MDV infection of chickens treated withS-methylisothiourea, an inhibitor of iNOS, resulted in increased virus load compared to nontreated chickens. These results suggest that NO may play an important role in control of MDV replication in vivo.


1995 ◽  
Vol 310 (2) ◽  
pp. 533-538 ◽  
Author(s):  
T Furukawa ◽  
H Kohno ◽  
R Tokunaga ◽  
S Taketani

To investigate the role of the iron-sulphur cluster in mammalian ferrochelatases, the terminal enzyme of the haem biosynthetic pathway, we examined the interaction of nitric oxide (NO) and ferrochelatase. When macrophage cell line RAW 264.7 cells were treated with interferon-gamma and lipopolysaccharide NO synthesis in the cells was stimulated, and a decrease in ferrochelatase activity was observed, with no change in the amount of ferrochelatase. The addition of NG-monomethyl-L-arginine, a selective inhibitor of NO synthesis, reduced the effect of interferon-gamma and lipopolysaccharide, while the effect of NG-monomethyl-L-arginine was suppressed by the addition of L-arginine, a substrate of NO synthase. When purified recombinant human ferrochelatase was treated with 3-morpholinosydnonimine, a NO-generating compound, ferrochelatase activity decreased with disappearance of characteristic absorbance spectra of the iron-sulphur cluster. S-Nitroso-N-acetylpenicillamine also reduced the activity, in a dose-dependent manner. These results indicate that ferrochelatase activity can be modulated by NO synthesis probably through disruption of the iron-sulphur cluster. We propose that inactivation of ferrochelatase mediated by NO (or NO-derived species) may play a role in the regulation of haem metabolism.


1998 ◽  
Vol 94 (5) ◽  
pp. 505-509 ◽  
Author(s):  
N. L. Bruda ◽  
B. J. Hurlbert ◽  
G. E. Hill

1. Cardiopulmonary bypass is associated with an increase in nitric oxide concentrations, and plasma levels of tumour necrosis factor and interleukin-1. Aprotinin, a serine protease inhibitor, commonly used during cardiopulmonary bypass to reduce blood loss, has been demonstrated to exhibit significant anti-inflammatory effects during and after cardiopulmonary bypass. 2. Airway nitric oxide was measured during cardiopulmonary bypass in 10 controls (Group 1), 10 subjects receiving half-dose aprotinin (Group 2) and 10 patients receiving full-dose aprotinin (Group 3). In vitro, a murine bronchial epithelial cell line (LA-4) was cultured with cytomix (a combination of tumour necrosis factor, interleukin-1, and (γ-interferon) with and without aprotinin in increasing concentrations. Nitrite concentrations, the stable and measureable end-product of nitric oxide oxidative metabolism, were measured in the culture supernatant by chemiluminescence. 3. Airway nitric oxide concentrations were increased after 50 min cardiopulmonary bypass compared with that measured at 5 min in controls (53 ± 5 versus 29 ± 3 ppb, P < 0.05) but not in the aprotinin-treated groups (25 ± 4 versus 14 ± 5, Group 2; 21 ± 6 versus 15 ± 3 ppb, Group 3). 4. In a dose-dependent manner, nitrite levels (means ± S.E.M.) were significantly reduced by aprotinin at 500 and 1000 units/ml when compared with cells cultured in the presence of cytomix alone (P < 0.05). 5. These data demonstrate that aprotinin, in a dose-responsive manner, reduces nitric oxide production in vivo and reduces cytokine-induced nitrite production by murine bronchial epithelial cells in vitro. Since increased airway nitric oxide is found in inflammatory lung diseases, like asthma, and anti-inflammatory therapy reduces the concentration of airway nitric oxide, these data support the concept that aprotinin is anti-inflammatory during cardiopulmonary bypass.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonia Agrawal ◽  
Suwarna Gample ◽  
Amar Yeware ◽  
Dhiman Sarkar

AbstractThe development of the latent phenotype of Mycobacterium tuberculosis (Mtb) in the human lungs is the major hurdle to eradicate Tuberculosis. We recently reported that exposure to nitrite (10 mM) for six days under in vitro aerobic conditions completely transforms the bacilli into a viable but non-cultivable phenotype. Herein, we show that nitrite (beyond 5 mM) treated Mtb produces nitric oxide (NO) within the cell in a dose-dependent manner. Our search for the conserved sequence of NO synthesizing enzyme in the bacterial system identified MRA2164 and MRA0854 genes, of which the former was found to be significantly up regulated after nitrite exposure. In addition, the purified recombinant MRA2164 protein shows significant nitrite dependent NO synthesizing activity. The knockdown of the MRA2164 gene at mRNA level expression resulted in a significantly reduced NO level compared to the wild type bacilli with a simultaneous return of its replicative capability. Therefore, this study first time reports that nitrite induces dormancy in Mtb cells through induced expression of the MRA2164 gene and productions of NO as a mechanism for maintaining non-replicative stage in Mtb. This observation could help to control the Tuberculosis disease, especially the latent phenotype of the bacilli.


1994 ◽  
Vol 72 (02) ◽  
pp. 309-312 ◽  
Author(s):  
R Berkels ◽  
W Klaus ◽  
M Boiler ◽  
R Rösen

SummaryThe in vitro effect of nifedipine, a calcium channel blocker of the dihydropyridine (DHP) type, on platelet aggregation was reinvestigated considering especially the capability of platelets to form endogenous nitric oxide (NO). We studied the dose-dependent antiaggregatory property of nifedipine in porcine platelet rich plasma. Aggregation was stimulated by collagen (7.5 ¼g/ml). Nifedipine inhibited collagen-induced platelet aggregation with an IC50 of 380 nmol/1. The antiaggregatory effect of nifedipine could be significantly diminished by N-nitro-L-arginine (NNA) in a concentration dependent manner, whereas oxy haemoglobin (4 ¼M), a NO scavenger, totally abolished the effect of nifedipine. L-Arginine, the precursor of NO, dose-dependently inhibited the collagen-induced platelet aggregation but did not potentiate the effects of nifedipine. Therefore, we propose that in platelet rich plasma the nifedipine induced inhibition of platelet aggregation is mediated by NO, a potent endogenous inhibitor of aggregation. We could confirm this hypothesis by measuring NO directly with a specific electrode.


1996 ◽  
Vol 8 (2) ◽  
pp. 301 ◽  
Author(s):  
MB Herrero ◽  
JM Viggiano ◽  
Martinez S Perez ◽  
Gimeno MF de

The effect of three nitric oxide (NO) synthase inhibitors, L-NG-nitro-arginine (NO2Arg), NG-Nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, on in vitro fertilization in the mouse was examined. Mouse epididymal spermatozoa were capacitated in a medium with or without NO synthase inhibitors. Oocytes were inseminated and the percentage of oocytes with two pronuclei was scored after an 8-h incubation. NO2Arg and L-NAME, but not aminoguanidine, inhibited fertilization. L-NAME inhibited fertilization in a dose-dependent manner, and its effects were stereospecific. The inhibitory effect was neutralized by L-arginine but not by D-arginine. Moreover, D-NAME did not inhibit fertilization. The results suggest that NO synthase activity (presumably of the constitutive type is necessary for spermatozoa to display their full fertilizing ability.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1161-1166 ◽  
Author(s):  
Z Estrov ◽  
C Roifman ◽  
G Mills ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

Abstract The effect of recombinant interleukin 2 (IL2) on marrow CFU-C colony formation was evaluated to define the role for T lymphocytes in human marrow granulopoiesis. The colony-stimulating factor (CSA) used in our experiments was found to contain IL2. IL2 depletion from CSA resulted in a reduction in CFU-C colony proliferation. Addition of exogenous IL2 caused an increase in CFU-C colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody (MoAb) to the IL2 receptor. Moreover, anti-Tac in the absence of exogenous IL2 resulted in an overall decrease in colony numbers. Depletion of either adherent cells or T lymphocytes abolished the effect of IL2 and anti-Tac on colony growth. In the presence of IL2, re- addition of T lymphocytes to the T-depleted marrow or adherent cells to adherent cell-depleted marrow resulted in a significant increase in CFU- C colony numbers, whereas no significant effect was found when IL2- depleted CSA was used. Although T lymphocytes were not themselves essential for CFU-C colony growth, our studies indicate that IL2 and IL2-responsive T cells can regulate in vitro granulopoiesis.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1161-1166
Author(s):  
Z Estrov ◽  
C Roifman ◽  
G Mills ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

The effect of recombinant interleukin 2 (IL2) on marrow CFU-C colony formation was evaluated to define the role for T lymphocytes in human marrow granulopoiesis. The colony-stimulating factor (CSA) used in our experiments was found to contain IL2. IL2 depletion from CSA resulted in a reduction in CFU-C colony proliferation. Addition of exogenous IL2 caused an increase in CFU-C colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody (MoAb) to the IL2 receptor. Moreover, anti-Tac in the absence of exogenous IL2 resulted in an overall decrease in colony numbers. Depletion of either adherent cells or T lymphocytes abolished the effect of IL2 and anti-Tac on colony growth. In the presence of IL2, re- addition of T lymphocytes to the T-depleted marrow or adherent cells to adherent cell-depleted marrow resulted in a significant increase in CFU- C colony numbers, whereas no significant effect was found when IL2- depleted CSA was used. Although T lymphocytes were not themselves essential for CFU-C colony growth, our studies indicate that IL2 and IL2-responsive T cells can regulate in vitro granulopoiesis.


2013 ◽  
Vol 59 (3) ◽  
pp. 37-50 ◽  
Author(s):  
Bhusan Sahoo Himanshu ◽  
Subrat Kumar Bhattamisra ◽  
Uttam Kumar Biswas ◽  
Rakesh Sagar

Abstract At present, major causes of diseases is oxidative stress affecting both metabolic and physiological functions of the body. That is why there is a great need for investigation of nutritious food supplements for counteracting these oxidative stresses. Therefore, the aim of study was to evaluate the therapeutic potential of Apium leptophyllum Pers. fruits by estimating total phenolic as well as flavonoidal contents and antioxidant values. The collected fruits were extracted separately using different solvents like methanol, ethanol and water. Total phenolic and flavonoid contents were measured from the respective extracts and correlated with their antioxidant values. The antioxidant properties of various fruit extracts (12.5, 25, 50, 100 and 150 μg/ml) were evaluated by DPPH, hydroxyl, nitric oxide and superoxide scavenging assay and compared with ascorbic acid as a standard. All the extracts of A. leptophyllum were found to be dose dependent inhibition against these free radicals. Among all these extracts, the methanolic one was found better in the scavenging activity and followed dose-dependent manner against DPPH, hydroxyl radical, nitric oxide, superoxide anions with minimum IC50 values of 97.9, 89.02, 135.37, 127.73 μg/ml, respectively, and also observed more significant (p<0.01) as compared with standard Furthermore, total phenolic and flavonoidal contents were found highest in methanolic extract. The results obtained in this study clearly indicate that the methanolic extract of A. leptophyllum may be used as a new potential source of natural nutritional supplement in food or pharmaceutical industries due to rich source of phenolic, flavonoidal contents as well as antioxidant property


Sign in / Sign up

Export Citation Format

Share Document