Factors affecting the secretion of immunoactive inhibin into testicular interstitial fluid in rats

1988 ◽  
Vol 119 (2) ◽  
pp. 315-326 ◽  
Author(s):  
R. M. Sharpe ◽  
I. A. Swanston ◽  
I. Cooper ◽  
C. G. Tsonis ◽  
A. S. McNeilly

ABSTRACT Immunoreactive inhibin was measured in testicular interstitial fluid (IF) from rats during sexual maturation or after impairment of spermatogenesis induced by ethane dimethanesulphonate (EDS), unilateral cryptorchidism or local heating (43 °C, 30 min) of the testes, to ascertain its usefulness as a marker of changing Sertoli cell function. Cultures of isolated seminiferous tubules were also studied. Inhibin was measured by a radioimmunoassay directed towards the first 26 amino acids of the N-terminus of the α-subunit, and the results confirmed for selected pools of IF by in-vitro bioassay using dispersed ovine pituitary cells. During puberty, IF levels of immunoactive inhibin fell by more than 90% (P<0·001) between 30 and 60 days of age, a decrease paralleled by the levels of androgen-binding protein (ABP), another Sertoli cell product secreted into IF. These changes also paralleled, but preceded, the fall (60%; P<0·001) in serum levels of FSH between 40 and 70 days, while the serum and IF levels of testosterone increased more than two-fold over this period. When adult rats were injected with EDS to destroy the Leydig cells, testosterone levels in IF and serum were undetectable at 3 and 7 days after treatment, were just detectable at 14 days and thereafter returned slowly towards normal by 42 days. The initial androgen withdrawal following EDS treatment caused a progressive reduction in testicular weight up to 21 days and this was accompanied by a significant increase in the serum levels of FSH and a two- to threefold increase in the IF levels of immunoactive inhibin (and also of ABP). Serum FSH and IF levels of immunoactive inhibin returned to within the normal range by 42 days when testosterone levels had normalized. In contrast, in two other experimental situations in which a marked decrease in testicular weight coupled with an increase in IF levels of ABP occurs, different results for the IF levels of immunoactive inhibin were obtained. Thus, in rats exposed to local heating of the testes, IF levels of immunoactive inhibin remained unchanged from control values at 21–40 days after treatment, a finding confirmed by bioassay results. In rats made unilaterally cryptorchid for 10 months, levels of immunoactive inhibin in IF were reduced by 60% (P<0·01) in the abdominal compared with the contralateral scrotal testis. These results suggest that (1) IF levels of immunoactive inhibin do not always change in parallel to the levels of ABP and may be a useful marker of changing Sertoli cell function, and (2) in at least two situations (puberty and after EDS treatment), there may be a positive relationship between the serum levels of FSH and the IF levels of immunoactive inhibin. This positive relationship was confirmed by in-vitro findings in which FSH and dibutyryl cyclic AMP (but not testosterone) were shown to stimulate immunoactive inhibin production by isolated rat seminiferous tubules during culture for 2–6 days. J. Endocr. (1988) 119, 315–326

2007 ◽  
Vol 194 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Arnaud Lacombe ◽  
Vincent Lelievre ◽  
Charles E Roselli ◽  
Jean-Marc Muller ◽  
James A Waschek ◽  
...  

The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide have long been considered as putative regulators of testicular functions. In vitro evidence suggests that VIP could play an important role in testosterone biosynthesis. However, the endogenous role of VIP on testicular functions remained to be demonstrated. In C57BL/6 mice exhibiting a complete disruption of the VIP gene, we first observed here that serum testosterone levels were lower than those of WT littermates. At the age of 4 months, this phenotype was accompanied with a reduction of expression of StAR and 3-β-hydroxysteroid dehydrogenase (3β-HSD) in the testis. In addition, serum levels of FSH but not LH were reduced in young knock-out (KO) males. Testicular anatomy also revealed a higher percentage of degenerated seminiferous tubules in the 4-month-old VIP KO animals when compared with WT. In 15-month-old animals, control males showed typical testicular aging, including a severe degeneration of seminiferous tubules, a dramatic decrease in serum levels of testosterone, and a reduction in StAR and 3β-HSD gene expression. In age-matching VIP KO males, the levels of serum testosterone and steroidogenic enzymes were still very low. Interestingly, in contrast to that observed in young mice, testicular degeneration at 15 months was significantly less severe in VIP KO than WT mice. All together, these results suggest that 1) VIP is an important factor for regulating testosterone biosynthesis and FSH secretion and 2) VIP may influence testicular aging.


1985 ◽  
Vol 132 (2) ◽  
pp. 729-734 ◽  
Author(s):  
M. Benahmed ◽  
C. Grenot ◽  
E. Tabone ◽  
P. Sanchez ◽  
A.M. Morera

1990 ◽  
Vol 127 (3) ◽  
pp. 523-532 ◽  
Author(s):  
F. Jockenhövel ◽  
S. A. Khan ◽  
E. Nieschlag

ABSTRACT Serum FSH levels in fertile and infertile men were determined by applying the Sertoli cell in-vitro bioassay and six different immunoassays. Bioassay and immunoassay estimates were significantly correlated (r ranging from 0·78 to 0·86; P<0·01). On average, all immunoassays measured lower FSH concentrations in samples with low FSH levels and higher FSH concentrations in those with high FSH levels compared with the bioassay. Ratios of bioactivity to immunoreactivity (B/I) were highest in fertile men and lowest in men with severe disturbances of testicular function. Depending on which immunoassay was used these differences were either significant or only marginal. Dose–response characteristics for WHO FSH standard preparation 78/549, used in the bioassay as well as in the immunoassays, were different between immunoassays and the bioassay, suggesting that decreasing B/I ratios with increasing FSH serum levels were method-related and reflected different slopes of the dose–response characteristics of the assays, rather than being true changes in the molecular composition of FSH. The present investigation underlines the necessity of choosing the immunoassay used for comparison with the bioassay carefully and of validating the system in regard to parallelism between dose–response characteristics. B/I ratios must be interpreted with great caution and previous studies which report changing B/I ratios in various endocrine situations may have to be reevaluated. Journal of Endocrinology (1990) 127, 523–532


2010 ◽  
Vol 22 (9) ◽  
pp. 66
Author(s):  
P. K. Nicholls ◽  
P. G. Stanton ◽  
K. L. Walton ◽  
R. I. McLachlan ◽  
L. O'Donnell ◽  
...  

Spermatogenesis is absolutely dependent on follicle stimulating hormone (FSH) and androgens; acute suppression of these hormones inhibits germ cell development and thus sperm production. The removal of intercellular junctions and release of spermatids by the Sertoli cell, a process known as spermiation, is particularly sensitive to acute hormone suppression(1). To define the molecular mechanisms that mediate FSH and androgen effects in the testis, we investigated the expression and hormonal regulation of micro-RNAs (miRNA), small non-coding RNAs that regulate protein translation and modify cellular responses. By array analysis, we identified 23 miRNAs that were upregulated >2-fold in stage VIII seminiferous tubules following hormone suppression, and in vitro in primary Sertoli cells. We subsequently validated the expression and hormonal regulation of several miRNAs, including miR-23b, -30d and -690 by quantitative PCR in primary Sertoli cells. Bioinformatic analysis of potential targets of hormonally-suppressed miRNAs identified genes associated with Focal adhesions (54 genes, P = –ln(17.97)) and the Regulation of the actin cytoskeleton (52 genes, P = –ln(10.16)), processes known to be intimately associated with adhesion of spermatids to Sertoli cells(2, 3). Furthermore, this analysis identified numerous components of the testicular tubulobulbar complex (TBC) as being targets of hormonally sensitive miRNAs. The TBC is a podosome-like structure between Sertoli and adjacent spermatids in the testis, which internalises intact inter-cellular junctions by endocytotic mechanisms prior to spermiation(4). We then demonstrate the hormonal regulation of predicted miRNA target proteins, and validate novel inhibitory miRNA interactions with Pten, nWASP, Eps15 and Picalm by luciferase knockdown in vitro. We hypothesise that hormonally suppressed miRNAs inhibit TBC function, and subsequently, endocytosis of intercellular junctions. In conclusion, we have demonstrated that hormonal suppression in the testis stimulates the expression of a subset of Sertoli cell miRNAs that are likely regulators of cell adhesion protein networks involved in spermiation. (1) Saito K, O’Donnell L, McLachlan RI, Robertson DM 2000 Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats. Endocrinology 141: 2779–2.(2) O’Donnell L, Stanton PG, Bartles JR, Robertson DM 2000 Sertoli cell ectoplasmic specializations in the seminiferous epithelium of the testosterone-suppressed adult rat. Biol Reprod 63: 99–108.(3) Beardsley A, Robertson DM, O’Donnell L 2006 A complex containing alpha6beta1-integrin and phosphorylated focal adhesion kinase between Sertoli cells and elongated spermatids during spermatid release from the seminiferous epithelium. J Endocrinol 190(3): 759–70.(4) Young JS, Guttman JA, Vaid KS, Vogl AW 2009 Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 80: 162–74.


Endocrinology ◽  
1993 ◽  
Vol 132 (3) ◽  
pp. 975-982 ◽  
Author(s):  
J P de Winter ◽  
H M Vanderstichele ◽  
M A Timmerman ◽  
L J Blok ◽  
A P Themmen ◽  
...  

1991 ◽  
Vol 128 (3) ◽  
pp. 359-NP ◽  
Author(s):  
R. M. Sharpe ◽  
J. M. S. Bartlett ◽  
G. Allenby

ABSTRACT Following on from our recent evidence that Sertoli cells may regulate testicular interstitial fluid (IF) volume, this study has assessed whether depletion of specific germ cell types in vivo is associated with changes in recovered IF volume. Germ cell depletion was induced by either a single oral administration of 650 mg methoxyacetic acid (MAA)/kg or exposure of the testes to local heating (43 °C for 30 min). Treatment with MAA induced depletion or loss of most pachytene and later spermatocytes at 1–3 days and, because of maturation depletion, this resulted in the specific depletion of later germ cell types at 7–35 days. Testicular IF volume was unchanged at 1–7 days after MAA treatment but was increased significantly (P < 0·01) at 14 days and was nearly doubled (P< 0·001) at 21 days, before returning to control levels at 28–42 days. Serum LH (and FSH) levels were generally higher in MAA-treated rats, especially at 21 and 28 days, but there was no obvious correlation between LH levels and IF volume changes. Similarly, there was no relationship between IF volume changes and testicular weight or IF levels of testosterone. The increase in IF volume at 14–21 days after MAA treatment coincided with specific depletion of the later elongate spermatids (steps 14–19) and, when these cells reappeared in the testis, IF volume normalized. This possible causal association was studied further in rats exposed to local testicular heating which, within 3 days, caused major depletion of pachytene spermatocytes and early (step 1–8) spermatids. However, testicular IF volume in heat-exposed rats did not change until 14 days, a time at which depletion of the later (step 9–19) spermatids first became evident; IF volume remained increased whilst these germ cells were absent or depleted. The pattern of change in IF volume in heat-exposed rats was not related to LH (or FSH) levels, which were raised at most time-points after heat treatment, nor to testicular weight which was decreased considerably at 3 days and declined progressively thereafter. These data thus provide evidence that specific depletion of the most mature germ cell types (the elongate spermatids) is associated with specific changes in testicular IF volume, presumably via modulation of the secretion of vasoactive factors by the Sertoli cells. These findings also reinforce the growing evidence for the mutual interdependence of all of the cell types in the testis. Journal of Endocrinology (1991) 128, 359–367


Sign in / Sign up

Export Citation Format

Share Document