Further Evidence of Germ-Cell Influence upon Sertoli-Cell Function in Vitro

1987 ◽  
Vol 513 (1 Cell Biology) ◽  
pp. 428-430
Author(s):  
B. LE MAGUERESSE ◽  
B. JÉGOU
Keyword(s):  
1985 ◽  
Vol 132 (2) ◽  
pp. 729-734 ◽  
Author(s):  
M. Benahmed ◽  
C. Grenot ◽  
E. Tabone ◽  
P. Sanchez ◽  
A.M. Morera

1999 ◽  
Vol 340 (1) ◽  
pp. 309-320 ◽  
Author(s):  
Sikha Bettina MUKHERJEE ◽  
S. ARAVINDA ◽  
B. GOPALAKRISHNAN ◽  
Sushma NAGPAL ◽  
Dinakar M. SALUNKE ◽  
...  

The seminiferous tubular fluid (STF) provides the microenvironment necessary for spermatogenesis in the adluminal compartment of the seminiferous tubule (ST), primarily through secretions of the Sertoli cell. Earlier studies from this laboratory demonstrated the presence of glutathione S-transferase (GST) in STF collected from adult rat testis and in the spent media of ST cultures. This study describes the cellular source, isoform composition and possible function of GSTs in the STF. The major GST isoforms present in STF in vivo share extensive N-terminal similarity with rat GSTM1 (rGSTM1), rGSTM2, rGSTM3 and rGST-Alpha. Molecular masses of rGSTM2, rGSTM3 and rGST-Alpha from liver and testis sources were similar, unlike STF-GSTM1, which was larger by 325 Da than its liver counterpart. Peptide digest analysis profiles on reverse-phase HPLC between liver and STF isoforms were identical, and N-terminal sequences of selected peptides obtained by digestion of the various isoforms were closely similar. The above results confirmed close structural similarity between liver and STF-GST isoforms. Active synthesis and secretion of GSTs by the STs were evident from recovery of radiolabelled GST from the spent media of ST cultures. Analysis of secreted GST isoforms showed that GST-Alpha was not secreted by the STs in vitro, whereas there was an induction of GST-Pi secretion. Detection of immunostainable GST-Mu in Sertoli cells in vitro and during different stages of the seminiferous epithelium in vivo, coupled with the recovery of radiolabelled GST from Sertoli cell-culture media, provided evidence for Sertoli cells as secretors of GST. In addition, STF of ‘Sertoli cell only’ animals showed no change in the profile of GST isoform secretion, thereby confirming Sertoli cells as prime GST secretors. Non-recovery of [35S]methionine-labelled GSTs from germ cell culture supernatants, but their presence in germ cell lysates, confirm the ability of the germ cells to synthesize, but not to release, GSTs. Functionally, STF-GSTM1 appeared to serve as a steroid-binding protein by its ability to bind to testosterone and oestradiol, two important hormones in the ST that are essential for spermatogenesis, with binding constants of < 9.8×10-7 M for testosterone and 9×10-6 M for oestradiol respectively.


2019 ◽  
Vol 130 ◽  
pp. 8-18
Author(s):  
M.N. Segunda ◽  
J. Bahamonde ◽  
I. Muñoz ◽  
S. Sepulveda ◽  
J. Cortez ◽  
...  

2009 ◽  
Vol 21 (7) ◽  
pp. 882 ◽  
Author(s):  
Sangho Roh ◽  
Hye-Yeon Choi ◽  
Sang Kyu Park ◽  
Cheolhee Won ◽  
Bong-Woo Kim ◽  
...  

Recent studies reported that the direct transformation of one differentiated somatic cell type into another is possible. In the present study, we were able to modulate the cell fate of somatic cells to take on male germ cell function by introducing cell extracts derived from porcine testis tissue. Fibroblasts were treated with streptolysin O, which reversibly permeabilises the plasma membrane, and incubated with testis extracts. Our results showed that the testis extracts (TE) could activate expression of male germ cell-specific genes, implying that TE can provide regulatory components required for altering the cell fate of fibroblasts. Male germ cell function was sustained for more than 10 days after the introduction of TE. In addition, a single TE-treated cell was injected directly into the cytoplasm of in vitro-matured porcine oocytes. The rate of blastocyst formation was significantly higher in the TE-treated nuclear donor cell group than in the control cell group. The expression level of Nanog, Sox9 and Eomes was drastically increased when altered cells were used as donor nuclei. Our results suggest that TE can be used to alter the cell fate of fibroblasts to express male germ cell function and improve the developmental efficiency of the nuclear transfer porcine embryos.


2003 ◽  
Vol 17 (9) ◽  
pp. 1868-1879 ◽  
Author(s):  
Wei Yan ◽  
Jun-Xing Huang ◽  
Anna-Stina Lax ◽  
Lauri Pelliniemi ◽  
Eeva Salminen ◽  
...  

Abstract To explore physiological roles of BCL-W, a prosurvival member of the BCL-2 protein family, we generated transgenic (TG) mice overexpressing Bcl-w driven by a chicken β-actin promoter. Male Bcl-w TG mice developed normally but were infertile. The adult TG testes displayed disrupted spermatogenesis with various severities ranging from thin seminiferous epithelium containing less germ cells to Sertoli cell-only appearance. No overpopulation of any type of germ cells was observed during testicular development. In contrast, the developing TG testes displayed decreased number of spermatogonia, degeneration, and detachment of spermatocytes and Sertoli cell vacuolization. The proliferative activity of germ cells was significantly reduced during testicular development and spermatogenesis, as determined by in vivo and in vitro 5′-bromo-2′deoxyuridine incorporation assays. Sertoli cells were structurally and functionally normal. The degenerating germ cells were TUNEL-negative and no typical apoptotic DNA ladder was detected. Our data suggest that regulated spatial and temporal expression of BCL-W is required for normal testicular development and spermatogenesis, and overexpression of BCL-W inhibits germ cell cycle entry and/or cell cycle progression leading to disrupted spermatogenesis.


Endocrinology ◽  
1993 ◽  
Vol 132 (3) ◽  
pp. 975-982 ◽  
Author(s):  
J P de Winter ◽  
H M Vanderstichele ◽  
M A Timmerman ◽  
L J Blok ◽  
A P Themmen ◽  
...  

Endocrinology ◽  
2021 ◽  
Vol 162 (4) ◽  
Author(s):  
Siwen Wu ◽  
Lixiu Lv ◽  
Linxi Li ◽  
Lingling Wang ◽  
Baiping Mao ◽  
...  

Abstract Throughout spermatogenesis, cellular cargoes including haploid spermatids are required to be transported across the seminiferous epithelium, either toward the microtubule (MT) plus (+) end near the basement membrane at stage V, or to the MT minus (−) end near the tubule lumen at stages VI to VIII of the epithelial cycle. Furthermore, preleptotene spermatocytes, differentiated from type B spermatogonia, are transported across the Sertoli cell blood-testis barrier (BTB) to enter the adluminal compartment. Few studies, however, have been conducted to explore the function of MT-dependent motor proteins to support spermatid transport during spermiogenesis. Herein, we examined the role of MT-dependent and microtubule plus (+) end–directed motor protein kinesin 15 (KIF15) in the testis. KIF15 displayed a stage-specific expression across the seminiferous epithelium, associated with MTs, and appeared as aggregates on the MT tracks that aligned perpendicular to the basement membrane and laid across the entire epithelium. KIF15 also tightly associated with apical ectoplasmic specialization, displaying strict stage-specific distribution, apparently to support spermatid transport across the epithelium. We used a loss-of-function approach by RNAi to examine the role of KIF15 in Sertoli cell epithelium in vitro to examine its role in cytoskeletal-dependent Sertoli cell function. It was noted that KIF15 knockdown by RNAi that reduced KIF15 expression by ~70% in Sertoli cells with an established functional tight junction barrier impeded the barrier function. This effect was mediated through remarkable changes in the cytoskeletal organization of MTs, but also actin-, vimentin-, and septin-based cytoskeletons, illustrating that KIF15 exerts its regulatory effects well beyond microtubules.


Sign in / Sign up

Export Citation Format

Share Document