Corticotrophin-releasing peptides in rat hypophysial portal blood after paraventricular lesions: a marked reduction in the concentration of corticotrophin-releasing factor-41, but no change in vasopressin

1990 ◽  
Vol 125 (2) ◽  
pp. 175-183 ◽  
Author(s):  
F. A. Antoni ◽  
G. Fink ◽  
W. J. Sheward

ABSTRACT Previous data show that corticotrophin-releasing factor-41 (CRF-41), arginine vasopressin (AVP) and oxytocin are released into hypophysial portal blood. It has been presumed that the CRF-41 originates mainly from parvicellular neurones of the paraventricular nuclei (PVN); however, AVP and oxytocin could also be derived as a consequence of preterminal release from magnocellular projections to the neurohypophysis. The latter has been suggested to be the case for AVP as assessed by studies of the median eminence in vitro. Here we have investigated the source of CRF-41, AVP and oxytocin in hypophysial portal blood of adult male Wistar rats 8–10 days after surgical lesioning of the PVN. In PVN-lesioned animals the output of CRF-41 into hypophysial portal blood was reduced by about 90%, and that of oxytocin by about 40%: however, the output of AVP into portal blood was reduced only by about 10%. The release of AVP into portal blood increased after adrenalectomy; this increased release could be returned to normal by treatment with dexamethasone. No change of AVP release occurred after adrenalectomy in animals in which the PVN had been lesioned. These results show (i) that most of the CRF-41 released into hypophysial portal blood is derived from the PVN, (ii) that in PVN-lesioned animals AVP and oxytocin release remains at near normal or 60% of normal respectively, suggesting that a substantial amount of both neuropeptides in portal blood is derived as a consequence of preterminal release from supraoptic nuclei projections in the median eminence, and (iii) that glucocorticoid feedback inhibition of AVP release is exerted at the level of the PVN. Journal of Endocrinology (1990) 125, 175–183

1990 ◽  
Vol 124 (1) ◽  
pp. 141-150 ◽  
Author(s):  
W. J. Sheward ◽  
J. E. Coombes ◽  
R. J. Bicknell ◽  
G. Fink ◽  
J. A. Russell

ABSTRACT The effects of morphine dependence and abrupt opiate withdrawal on the release of oxytocin and corticotrophin-releasing factor-41 (CRF-41) into hypophysial portal vessel blood in rats anaesthetized with urethane were investigated. Adult female Sprague–Dawley rats were made dependent upon morphine by intracerebroventricular infusion of morphine for 5 days; abrupt opiate withdrawal was induced by injection of the opiate antagonist naloxone. The basal concentrations of oxytocin in portal or peripheral plasma from morphine-dependent rats did not differ significantly from those in control, vehicle-infused rats. In rats in which the pituitary gland was not removed after stalk section, the i.v. injection of naloxone hydrochloride (5 mg/kg) resulted in a large and sustained increase in the concentration of oxytocin in both portal and peripheral plasma in control and morphine-dependent rats. The i.v. injection of naloxone resulted in a threefold increase in the secretion of oxytocin into portal blood in acutely hypophysectomized rats infused with morphine, but did not alter oxytocin secretion in vehicle-infused hypophysectomized rats. The concentration of oxytocin in peripheral plasma in both vehicle- and morphine-infused hypophysectomized rats was at the limit of detection of the assay and was unchanged by the administration of naloxone. There were no significant differences in the secretion of CRF-41 into portal blood in vehicle- or morphine-infused hypophysectomized rats either before or after the administration of naloxone. These data show that, as for oxytocin release from the neurohypophysis into the systemic circulation, the mechanisms which regulate oxytocin release into the portal vessel blood can also be made morphine dependent. The lack of effect of morphine or naloxone on the release of CRF-41 or other stress neurohormones suggests that the effect of opiate dependence and withdrawal is selective for oxytocin and is not simply a non-specific response to 'stress'. Journal of Endocrinology (1990) 124, 141–150


1984 ◽  
Vol 102 (1) ◽  
pp. 63-NP ◽  
Author(s):  
F. Moos ◽  
M. J. Freund-Mercier ◽  
Y. Guerné ◽  
J. M. Guerné ◽  
M. E. Stoeckel ◽  
...  

ABSTRACT The release of endogenous oxytocin and vasopressin by rat paraventricular and supraoptic nuclei in vitro during a 10-min period, 30 min after beginning the incubation, was measured radioimmunologically. Mean basal hormone release per 10 min and per pair of nuclei was: 128·4 ± 12·4 (s.e.m.) pg vasopressin (n = 15) and 39·0 ± 3·0 pg oxytocin (n = 66) for supraoptic nuclei from male rats; 273·9 ± 42·6 pg vasopressin (n = 11) and 34·2 ± 3·5 pg oxytocin (n = 15) for supraoptic nuclei from lactating rats; 70·0 ± 8·6 pg vasopressin (n = 52) and 21·8 ± 1·3 pg oxytocin (n = 68) for paraventricular nuclei from male rats; 59·1 ± 8·6 pg vasopressin (n = 10) and 27·0 ± 4·6 pg oxytocin (n = 16) for paraventricular nuclei from lactating rats. In male and lactating rats, both nuclei contained and released more vasopressin than oxytocin. For oxytocin alone, the paraventricular nucleus of male rats contained and released significantly less hormone than the supraoptic nucleus. This difference was not apparent in lactating rats. For vasopressin alone, the paraventricular nucleus contained and released significantly less hormone than the supraoptic nucleus in both male and lactating rats. When the hormone released was calculated as a percentage of the total tissue content the release was about 0·9% for oxytocin from both nuclei in male and lactating rats and also for vasopressin in lactating rats, but was only about 0·5% for vasopressin from both nuclei in male rats. The influence of oxytocin and analogues of oxytocin (including one antagonist) upon the release of oxytocin and vasopressin was studied. Adding oxytocin to the incubation medium (0·4–4 nmol/l solution) induced a dose-dependent rise in oxytocin release from both nuclei of male or lactating rats. A 4 nmol/l solution of isotocin had a similar effect to a 0·4 nmol/l solution of oxytocin, but arginine-vasopressin never affected basal release of oxytocin. In no case was vasopressin release modified. An oxytocin antagonist (1 μmol/l solution) significantly reduced basal oxytocin release and blocked the stimulatory effect normally induced by exogenous oxytocin, as did gallopamil hydrochloride (D600, 10 μmol/l solution), a Ca2+ channel blocker, or incubation in a Ca2+-free medium. These findings are discussed in relation to the literature on the central effects of neurohypophysial peptides. It may be concluded that the regulatory role of endogenous oxytocin in the hypothalamus on the milk-ejection reflex could result from its local release in the extracellular spaces of magnocellular nuclei. J. Endocr. (1984) 102, 63–72


1991 ◽  
Vol 129 (2) ◽  
pp. 261-268 ◽  
Author(s):  
M. J. Shipston ◽  
F. A. Antoni

ABSTRACT Vasopressin and 41-residue corticotrophin-releasing factor (CRF-41) are physiological mediators of the hypothalamic control of pituitary ACTH secretion, whilst adrenocortical glucocorticoids are the major inhibitory factors regulating ACTH output. In the present study it was investigated in vitro whether the characteristics of early glucocorticoid inhibition of stimulated ACTH secretion would differ depending on the nature of the stimulus and the temporal relationship between secretagogue and steroid. The experiments were carried out using perifused segments of rat adenohypophysis obtained from randomly cycling female rats. Repeated pulses (5 min) of CRF-41 or vasopressin were given at 1-h intervals for up to 7 h. The net release of ACTH became stable after the second secretagogue pulse. Administration of 0·1 μmol corticosterone/l 30 min before and during a 5-min pulse of 10 nmol CRF-41/l inhibited CRF-41-stimulated ACTH release to 60% of control. Stimulated hormone release remained suppressed at 90 min after the start of the corticosterone infusion and returned to control levels by 150 min. If corticosterone treatment (35 min total exposure) was started simultaneously with the CRF-41 pulse, no inhibitory effect of the steroid was observed at any subsequent time-point examined (60,90,120 and 150 min). In contrast, vasopressin-stimulated ACTH release was inhibited by approximately 50% when corticosterone was applied before, or simultaneously with, a 5-min pulse of 10 nmol vasopressin/l. The synthetic glucocorticoid type II receptor agonist RU28362, administered 30 min before and during a 5-min pulse of 10 nmol CRF-41/l, reduced CRF-41-stimulated ACTH release to 50% of control up to 2·5 h after the start of RU28362 application (although inhibition after 35 min exposure was not statistically significant). Inhibition of ACTH release stimulated by 10 nmol vasopressin/l was observed within 35 min of steroid application and was maintained up to 2·5 h after the initial application of RU28362. The action of RU28362 on CRF-41-stimulated ACTH release was blocked by inhibitors of transcription (actinomycin D) and translation (puromycin); notably these drugs did not modify the ACTH response to CRF-41. In contrast, actinomycin D as well as puromycin reduced vasopressin-stimulated ACTH release. The data suggest that: (1) the timing of steroid application is important in determining the early glucocorticoid inhibition of CRF-41- but not vasopressin-stimulated ACTH secretion; (2) CRF-41 and vasopressin mobilize different pools of ACTH from the anterior pituitary gland; (3) type II glucocorticoid receptors and synthesis of new protein(s) are involved in the early inhibitory action of glucocorticoids; (4) depending on the timing and nature of the incident secretagogue, differential negative feedback inhibition of ACTH secretion may occur at the pituitary level in vivo. Journal of Endocrinology (1991) 129, 261–268


1986 ◽  
Vol 111 (1) ◽  
pp. 75-82 ◽  
Author(s):  
J. Dohanics ◽  
G. Kapócs ◽  
T. Janáky ◽  
J. Z. Kiss ◽  
G. Rappay ◽  
...  

ABSTRACT The effects of lesions in the paraventricular nucleus (PVN) on the adrenocortical response to ether stress were investigated in neurohypophysectomized and intact rats. During the first 4 days after placement of lesions in the PVN, the corticosterone response to ether stress was almost completely inhibited. It then gradually increased and, within 4–6 weeks of surgery, was restored to about 60% of that in sham-operated rats. Basal plasma concentrations of corticosterone were low in rats after placement of lesions in the PVN and/or after neurointermediate lobectomy (NILX). Corticosterone responses to ether stress were similar in groups submitted to PVN lesions and/or NILX, and lower than those in the appropriate sham-operated groups. In all lesioned groups, plasma ACTH concentrations after a combination of stressors (ether plus laparotomy) were also lower than those in the sham-operated groups. Six weeks after lesioning of the PVN, immunoreactive rat corticotrophin-releasing factor-41 (rCRF-41) concentrations in stalk-median eminence (SME) extract fell to about 5% of that in sham-operated rats, while immunoreactive arginine vasopressin (AVP) concentrations did not change. Immunohistochemistry revealed a substantial decrease in rCRF-41 immunostaining of the median eminence 6 weeks after lesioning of the PVN, though randomly located clusters of stained terminals were still seen in the whole rostro-caudal extent of the median eminence. A mixture containing synthetic rCRF-41 and AVP, in proportions similar to those in SME extracts from sham-operated rats, caused significantly less release of ACTH from anterior pituitary cell cultures than did SME extracts from sham-operated rats. Extracts of SME from PVN-lesioned rats released as much ACTH as a mixture containing synthetic rCRF-41 and AVP in proportions similar to those in the SME extracts from PVN-lesioned rats. Extracts of SME from either PVN-lesioned or sham-operated rats did not cause a significant increase in the amount of ACTH released when preincubated with antisera to both rCRF-41 and AVP. It is suggested that (1) the restoration of the adrenocortical reponse to ether stress, evident within a few days of placement of lesions in the PVN, occurs independently of neurohypophysial function; (2) the full corticosterone and ACTH response to ether or ether plus laparotomy stress requires not only an intact PVN but also an intact neurointermediate lobe; (3) SME extracts from sham-operated rats contain a factor(s) with the ability to potentiate the ACTHreleasing effect of rCRF-41 and AVP; and (4) the ACTH-releasing activity of SME extract obtained from rats with long-term PVN lesions is probably due to its remaininJ content of rCRF-41 and AVP. J. Endocr. (1986) 111, 75–82


1991 ◽  
Vol 129 (1) ◽  
pp. 91-98 ◽  
Author(s):  
W. J. Sheward ◽  
G. Fink

ABSTRACT To investigate the feedback effects of corticosterone on the secretion of corticotrophin-releasing factor-41 (CRF-41), oxytocin and arginine vasopressin (AVP), hypophysial portal vessel blood was collected from control (intact) and long-term (6–8 weeks) hypophysectomized rats. In preliminary experiments in rats anaesthetized with urethane, long-term hypophysectomy resulted in a significant increase in the secretion of oxytocin and AVP; the hypothalamic contents of oxytocin and AVP were also increased in comparison with pituitary-intact rats. In long-term hypophysectomized rats anaesthetized with sodium pentobarbitone, but not with urethane, the output of CRF-41 into portal blood was increased twofold in comparison with that in control rats. In long-term hypophysectomized rats anaesthetized with pentobarbitone, the i.v. infusion of corticosterone (7·2 nmol/min) for a 2 h period of portal blood collection did not alter the secretion of CRF-41, oxytocin or AVP into portal blood; however, the secretion of CRF-41 and, to a lesser extent, AVP was significantly reduced in hypophysectomized rats by continuous corticosterone replacement, by a pellet of corticosterone implanted s.c. for 5 days before portal blood collection. These results confirm that the secretion of CRF-41 is differently affected by the anaesthetics urethane and pentobarbitone, and in long-term hypophysectomized rats show (i) that there were no apparent feedback effects of corticosterone infusion over a 2 h period on the secretion of any of the peptides studied, (ii) that late delayed feedback effects of continuous administration of corticosterone are mediated by a reduction in CRF-41 and AVP output, and (iii) that corticosterone has no effects on oxytocin secretion into portal blood. Journal of Endocrinology (1991) 129, 91–98


1997 ◽  
Vol 9 (11) ◽  
pp. 813-822 ◽  
Author(s):  
T. J. Wu ◽  
Adrian R. Pierotti† ◽  
Moshe Jakubowski‡ ◽  
W. John Sheward ◽  
Marc J. Glucksman ◽  
...  

1993 ◽  
Vol 57 (5) ◽  
pp. 765-775 ◽  
Author(s):  
Iain Clarke ◽  
David Jessop ◽  
Robert Millar ◽  
Margaret Morris ◽  
Steven Bloom ◽  
...  

1995 ◽  
Vol 145 (1) ◽  
pp. 143-153 ◽  
Author(s):  
G A C van Haasteren ◽  
E Linkels ◽  
W Klootwijk ◽  
H van Toor ◽  
J M M Rondeel ◽  
...  

Abstract The purpose of this study was to investigate the mechanisms involved in the reduced thyroid function in starved, young female rats. Food deprivation for 3 days reduced the hypothalamic content of prothyrotrophin-releasing hormone (proTRH) mRNA, the amount of proTRH-derived peptides (TRH and proTRH160–169) in the paraventricular nucleus, the release of proTRH-derived peptides into hypophysial portal blood and the pituitary levels of TSHβ mRNA. Plasma TSH was either not affected or slightly reduced by starvation, but food deprivation induced marked increases in plasma corticosterone and decreases in plasma thyroid hormones. Refeeding after starvation normalized these parameters. Since the molar ratio of TRH and proTRH160–169 in hypophysial portal blood was not affected by food deprivation, it seems unlikely that proTRH processing is altered by starvation. The median eminence content of pGlu-His-Pro-Gly (TRH-Gly, a presumed immediate precursor of TRH), proTRH160–169 or TRH were not affected by food deprivation. Since median eminence TRH-Gly levels were very low compared with other proTRH-derived peptides it is unlikely that α-amidation is a rate-limiting step in hypothalamic TRH synthesis. Possible negative effects of the increased corticosterone levels during starvation on proTRH and TSH synthesis were studied in adrenalectomized rats which were treated with corticosterone in their drinking water (0·2 mg/ml). In this way, the starvation-induced increase in plasma corticosterone could be prevented. Although plasma levels of thyroid hormones remained reduced, food deprivation no longer had negative effects on hypothalamic proTRH mRNA, pituitary TSHβ mRNA and plasma TSH in starved adrenalectomized rats. Thus, high levels of corticosteroids seem to exert negative effects on the synthesis and release of proTRH and TSH. This conclusion is corroborated by the observation that TRH release into hypophysial portal blood became reduced after administration of the synthetic glucocorticosteroid dexamethasone. On the basis of these results, it is suggested that the reduced thyroid function during starvation is due to a reduced synthesis and release of TRH and TSH. Furthermore, the reduced TRH and TSH synthesis during food deprivation are probably caused by the starvation-induced enhanced adrenal secretion of corticosterone. Journal of Endocrinology (1995) 145, 143–153


Sign in / Sign up

Export Citation Format

Share Document