scholarly journals Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture

2003 ◽  
Vol 176 (3) ◽  
pp. 339-348 ◽  
Author(s):  
Y Koshihara ◽  
K Hoshi ◽  
R Okawara ◽  
H Ishibashi ◽  
S Yamamoto

Accumulating evidence indicates that menaquinone-4 (MK-4), a vitamin K(2) with four isoprene units, inhibits osteoclastogenesis in murine bone marrow culture, but the reason for this inhibition is not yet clear, especially in human bone marrow culture. To clarify the inhibitory mechanism, we investigated the differentiation of colony-forming-unit fibroblasts (CFU-Fs) and osteoclasts in human bone marrow culture, to learn whether the enhancement of the differentiation of CFU-Fs from progenitor cells might relate to inhibition of osteoclast formation. Human bone marrow cells were grown in alpha-minimal essential medium with horse serum in the presence of MK-4 until adherent cells formed colonies (CFU-Fs). Colonies that stained positive for alkaline phosphatase activity (CFU-F/ALP(+)) were considered to have osteogenic potential. MK-4 stimulated the number of CFU-F/ALP(+) colonies in the presence or absence of dexamethasone. The stimulation was also seen in vitamin K(1) treatment. These cells had the ability to mineralize in the presence of alpha-glycerophosphate. In contrast, both MK-4 and vitamin K(1) inhibited 1,25 dihydroxyvitamin D(3)-induced osteoclast formation and increased stromal cell formation in human bone marrow culture. These stromal cells expressed ALP and Cbfa1. Moreover, both types of vitamin K treatment decreased the expression of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor (RANKL/ODF) and enhanced the expression of osteoprotegerin/osteoclast inhibitory factor (OPG/OCIF) in the stromal cells. The effective concentrations were 1.0 microM and 10 microM for the expression of RANKL/ODF and OPG/OCIF respectively. Vitamin K might stimulate osteoblastogenesis in bone marrow cells, regulating osteoclastogenesis through the expression of RANKL/ODF more than through that of OPG/OCIF.

2011 ◽  
Vol 151 (4) ◽  
pp. 550-552 ◽  
Author(s):  
V. A. Nikitina ◽  
A. I. Chausheva ◽  
A. K. Zhanataev ◽  
E. Yu. Osipova ◽  
A. D. Durnev ◽  
...  

Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
M Kobayashi ◽  
BH Van Leeuwen ◽  
S Elsbury ◽  
ME Martinson ◽  
IG Young ◽  
...  

Abstract Human bone marrow cells cultured for 21 days in the presence of recombinant human interleukin-3 (IL-3) produced up to 28 times more colony-forming cells (CFC) than could be obtained from cultures stimulated with granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage CSF (GM-CSF). IL-3-cultured cells retained a multipotent response to IL-3 in colony assays but were restricted to formation of granulocyte colonies in G-CSF and granulocyte or macrophage colonies in GM-CSF. Culture of bone marrow cells in IL-3 also led to accumulation of large numbers of eosinophils and basophils. These data contrast with the effects of G-CSF, GM-CSF, and IL-3 in seven-day cultures. Here both GM-CSF and IL-3 amplified total CFC that had similar multipotential colony-forming capability in either factor. G-CSF, on the other hand, depleted IL-3-responsive colony-forming cells dramatically, apparently by causing these cells to mature into granulocytes. The data suggest that a large proportion of IL-3- responsive cells in human bone marrow express receptors for G-CSF and can respond to this factor, the majority becoming neutrophils. Furthermore, the CFC maintained for 21 days in IL-3 may be a functionally distinct population from that produced after seven days culture of bone marrow cells in either IL-3 or GM-CSF.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Alison T. Merryweather-Clarke ◽  
David Cook ◽  
Barbara Joo Lara ◽  
Peng Hua ◽  
Emmanouela Repapi ◽  
...  

1998 ◽  
Vol 29 (5-6) ◽  
pp. 439-451 ◽  
Author(s):  
Tsutomu Watanabe ◽  
Linda Kelsey ◽  
Ana Ageitos ◽  
Charles Kuszynski ◽  
Kazuhiko Ino ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kostinova AM ◽  
◽  
Yukhacheva DV ◽  
Akhmatova EA ◽  
Akhmatova NK ◽  
...  

Background: Possibility to control immune system by regulating the activity of Dendritic Cells (DC) with the help of vaccines or other immunobiological drugs opens great prospects for infectious, oncological and autoimmune control. The aim of this study was to evaluate in vitro the effect of adjuvant subunit and non-adjuvant split influenza vaccines on maturation of DCs from human bone marrow. Methods: From bone marrow cells of healthy volunteers, DCs were obtained using rGM-CSF and IL-4. On the 8th day of cultivation, 10μl of vaccines against influenza were introduced into the culture of Immature DCs (i-DCs): a non-adjuvant split vaccine (Vaxigripp, Sanofi Pasteur) and an immunoadjuvant subunit vaccine (Grippol plus, Petrovax), as well as immunomodulator Polyoxidonium. Results: Insertion of influenza vaccines into i-DC culture induced the acquisition by DCs typical morphological signs of maturation. DCs became large with eccentrically located of irregular shape nucleus, densified cytoplasm, numerous processes. By immunophenotypic examination decrease in monocyte/macrophage pool, cells with expression of CD34 immaturity marker, increase in expressing CD11c/CD86 costimulatory molecules and CD83 terminal differentiation molecules were observed. Although Polyoxidonium caused a decrease in number of CD11c/CD14 cells (18, 5%), but compared to vaccines, its activity was lower (p<0, 05). Grippol plus more actively induced differentiation of TLR2 and TLR8 expressing cells, whereas Vaxigripp-expression of TLR4 and TLR8 on DCs. Conclusion: The possibility of using in vitro model of DCs obtained from human bone marrow cells by cytokine stimulation for examination of the ability of influenza vaccines to induce DC maturation processes has been demonstrated.


2000 ◽  
Vol 68 (6) ◽  
pp. 3455-3462 ◽  
Author(s):  
Nicola J. Rogers ◽  
Belinda S. Hall ◽  
Jacktone Obiero ◽  
Geoffrey A. T. Targett ◽  
Colin J. Sutherland

ABSTRACT With the aim of developing an appropriate in vitro model of the sequestration of developing Plasmodium falciparumsexual-stage parasites, we have investigated the cytoadherence of gametocytes to human bone marrow cells of stromal and endothelial origin. Developing stage III and IV gametocytes, but not mature stage V gametocytes, adhere to bone marrow cells in significantly higher densities than do asexual-stage parasites, although these adhesion densities are severalfold lower than those encountered in classical CD36-dependent assays of P. falciparum cytoadherence. This implies that developing gametocytes undergo a transition from high-avidity, CD36-mediated adhesion during stages I and II to a lower-avidity adhesion during stages III and IV. We show that this adhesion is CD36 independent, fixation sensitive, stimulated by tumor necrosis factor alpha, and dependent on divalent cations and serum components. These data suggest that gametocytes and asexual parasites utilize distinct sets of receptors for adhesion during development in their respective sequestered niches. To identify receptors for gametocyte-specific adhesion of infected erythrocytes to bone marrow cells, we tested a large panel of antibodies for the ability to inhibit cytoadherence. Our results implicate ICAM-1, CD49c, CD166, and CD164 as candidate bone marrow cell receptors for gametocyte adhesion.


Sign in / Sign up

Export Citation Format

Share Document