Influence of welding and heat treatment on microstructure, properties and fracture behavior of a wrought aluminum alloy

2014 ◽  
pp. 1-32
Author(s):  
N. M. Ravindra Hilty ◽  
Craig C. Menzemer ◽  
T.S. Srivatsan ◽  
K. Manigandan
2010 ◽  
Vol 654-656 ◽  
pp. 1420-1423 ◽  
Author(s):  
Chun Wei Su ◽  
Peng Hooi Oon ◽  
Y.H. Bai ◽  
Anders W.E. Jarfors

The liquid forging process has the flexibilities of casting in forming intricate profiles and features while imparting the liquid forged components with superior mechanical strength compared to similar components obtained via casting. Additionally, liquid forging requires significantly lower machine loads compared to solid forming processes. Currently, components that are formed by liquid forging are usually casting alloys of aluminum. This paper investigates the suitability of liquid forging a wrought aluminum alloy Al-6061 and the mechanical properties after forming. The proper handling of the Al-6061 alloy in its molten state is important in minimizing oxidation of its alloying elements. By maintaining the correct alloying composition of Al-6061 after liquid forging, these Al-6061 samples can subsequently undergo a suitable heat treatment process to significantly improve their yield strengths. Results show that the yield strengths of these liquid forged Al-6061 samples can be increased from about 90MPa, when they are in the as-liquid forged state, to about 275MPa after heat treatment. This improved yield strength is comparable to that of Al-6061 samples obtained by solid forming processes. As such, the liquid forging process here has been shown to be capable of forming wrought aluminum alloy components that has the potential for structural applications.


2017 ◽  
Vol 67 (2) ◽  
pp. 109-116
Author(s):  
Branislav Vanko ◽  
Ladislav Stanček ◽  
Roman Moravčík

AbstractBy using the wrought aluminum alloys can be created castings with higher mechanical properties than the castings made of standard foundry aluminum alloys, but it is necessary to handle the process of making sound castings without any defects such as hot tears and shrinkage porosity. In experiments, we have been studied of wrought aluminum alloy EN AW-2024 which has been processed by the casting with crystallization under pressure with forced flow. Castings were heat treated by standard T6 heat treatment.


Author(s):  
Samson Oluropo Adeosun ◽  
E. I. Akpan ◽  
S. A. Balogun

This article discusses the effects of various modifications on the properties of aluminum alloys for structural applications. The effect of reinforcing particles on the mechanical properties of wrought 6063 aluminum alloy arising from our previous works is extensively discussed to identify the most promising reinforcing particles. It also discusses the improvement in mechanical properties of 1200 aluminum alloy using silicon carbide particulates. The effect of micro-alloy additions on the mechanical properties is also outlined in this article based on the results from our previous experimental works. Effect of combining heat treatment and deformation on the mechanical properties of wrought aluminum alloys is also presented. Results presented show that particle reinforcement, deformation, and microelemental additions to aluminum alloy result in significant improvement in mechanical properties of the alloys considered. Addition of reinforcing particles of barite, silicon carbide, iron fillings, and electric arc furnace dust are found to impart improved tensile strength to aluminum alloy. The most outstanding finding is that synergy between particle addition, deformation, and heat treatment has a good prospect in the production of improved aluminum alloy materials for automotive applications.


2008 ◽  
Vol 141-143 ◽  
pp. 385-390 ◽  
Author(s):  
D.S. Kim ◽  
C.G. Kang ◽  
S.M. Lee

This study demonstrated nanoindentation techniques of investigating the effects of size and feature in a microstructure on the mechanical properties of rheology-forged aluminum alloy. Mechanical properties and tribological characteristics of rheology-forged Al2024 wrought aluminum alloy in terms of T6 heat treatment were investigated by varying the aging time by nanoindentation and nanoscratch techniques. By nanoindentation/nanoscratch tests and atomic force microscopy, it was demonstrated that the 4 hour aged material exhibites the highest hardness because of the intermediate precipitate phase θ″, which was precipitated by T6 heat treatment at 495°C. Moreover, the friction coefficients in the precipitates in the eutectic phase region were lower than those in the primary α phase region.


Sign in / Sign up

Export Citation Format

Share Document