Seismic response of wrap-faced reinforced soil-retaining wall models using shaking table tests

2007 ◽  
Vol 14 (6) ◽  
pp. 355-364 ◽  
Author(s):  
A. Murali Krishna ◽  
G. Madhavi Latha
2021 ◽  
pp. 1-54
Author(s):  
A.M. Safaee ◽  
A. Mahboubi ◽  
A. Noorzad

Improving the characteristics of local low-strength soils at the construction site is one of the appropriate approaches to employ the soils as a backfill of geogrid reinforced soil (GRS) walls. In this study, the fiber-cement-treated sand-silt mixture was used as the backfill of walls. The post-earthquake performance of the walls was evaluated by applying the sinusoidal waves on 1-m high reduced-scale physical models and conducting a series of 1-g shaking table tests. A comparison of the wall models constructed with treated and untreated backfill indicated the advantages of geogrid-reinforced fiber-cement-treated soil walls subjected to strong ground motion. The results revealed the better behavior of the wall models backfilled with treated soil mixtures under dynamic loading. Such improved performance was more evident in (1) deformation responses, including the lateral displacement of wall facing, deformation mode, failure surfaces, and settlement of backfill surface and (2) acceleration response in different locations, including facing, reinforced, and retained zone of walls.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Sihan Li ◽  
Xiaoguang Cai ◽  
Liping Jing ◽  
Honglu Xu ◽  
Xin Huang ◽  
...  

This paper presents experimental results from shaking table tests on two reduced-scale geogrid reinforced soil-retaining walls (RSRWs) constructed using standard soil, modular facing blocks, and uniaxial geogrid reinforcement to investigate the distribution of the geogrid strain and the mode of potential failure surface for dynamic loading conditions. Similitude relationships for shaking table tests in a 1 g gravitational field were used to scale the specimen geometry, applied characteristics of the earthquake motions. The lateral displacement of the top model is sufficiently large for the top-model block to fall down, and the RSRW is thus destroyed. The tensile strain at the lower part is greater than that at the upper part of the RSRW. The tensile strain in different layers for two-tiered RSRW is consistent with single-step RSRW. On comparing the measured maximum tensile strain lines of the geogrid with the result of the existing calculation method of the potential failure surface, it can be observed that the existing partial calculation method is conservative. Based on the calculation methods of various potential failure surfaces and the measured data, the use of a two-tiered fold-line failure surface is proposed for the two-tiered RSRW while taking into consideration the width of the platform. And it is advised that the failure surface calculation method of BS8006 be used as the calculation method for the potential failure surface of the single-step RSRW under dynamic motion.


2020 ◽  
Vol 15 ◽  
pp. 24-34 ◽  
Author(s):  
Ripon Hore ◽  
Sudipta Chakraborty ◽  
Ayaz Mahmud Shuvon ◽  
Mehedi Ahmed Ansary

This research incorporates shaking table testing of scale wrap faced soil wall models to evaluate the seismic response of embankment. Currently the seismic designs of highway or railway embankment rely on little or no empirical data for calibrating numerical simulations. This research is working towards filling that empirical data gap. The specific purpose of the study was to evaluate the seismic response of constructed embankment model regarding the different input base accelerations with fixed frequency. A series of one-dimensional (1D) shaking table tests (0.05g, 0.1g, 0.15g and 0.2g), were performed on a 0.4 meters high wrap faced reinforced-soil wall model. Additionally, it was placed over 0.3 meters high soft clayey foundation. Predominantly, the influence of the base acceleration on the seismic response was studied in this paper. The physical models were subjected to harmonic sinusoidal input motions at a fixed frequency of 1 Hz, in order to assess the seismic behavior. The effects of parameters such as acceleration amplitudes and surcharge pressures on the seismic response of the model walls were considered. The relative density of the backfill material was kept fixed at 60%. The results of this study reveal that input accelerations and surcharge load had significant influence on the model wall, pore water pressure, and changes along the elevation. Acceleration response advances with the increase in base acceleration, so the difference being more perceptible at higher elevations. The pore water pressures were found to be high for high base shaking and low surcharge pressures at higher elevations. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining wall under different test conditions resting on soft clay.


Sign in / Sign up

Export Citation Format

Share Document