Specific surface area effect on compressibility behaviour of clayey soils

Author(s):  
Yeliz Yukselen-Aksoy ◽  
Abidin Kaya
2012 ◽  
Vol 17 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Andrzej Olchawa ◽  
Aleksandra Gorączko

Abstract The liquid limit - wL, the external surface area - Se, the concentration of exchangeable cations - Zi and the cation exchange capacity - CEC of seventeen clayey soils were determined. Finding the correlation between the liquid limit, external specific surface area and exchangeable cation concentration was the aim of this study. Experimental study performed using soils of the external surface area within the range of 4.1 to 118.5 m2·g-1. The relative content of sodium cation (i.e. Na+/CEC) varying between 0.03 and 1.0. Obtained results point to statistically significant relationship between these three properties. The greatest predictive power of linear regression was found for soils of external specific surface area larger than 60 m2·g-1. For the soils of comparable external surface area, the liquid limit increase with increasing the ratio of the content of sodium cation to the cation exchange capacity - Na+/CEC. For the soils of comparable composition of exchangeable cations the liquid limit increase with increasing the external surface area. These relationships indicates that interparticle forces have a prominent role in determining liquid limit of clayey soils.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2991
Author(s):  
Er-Jing Yang ◽  
Zhao-Tian Zeng ◽  
Hong-Yan Mo ◽  
Tao Hu ◽  
Cheng-Lin Yang ◽  
...  

Bound water is an important factor in controlling the physical, chemical and mechanical properties of clayey soils, and it plays an important role in geotechnical engineering disaster prevention and environmental protection. There are many factors (such as soil texture, mineral composition, specific surface area (SSA), organic matter content, porosity and so on) that affect bound water in natural clayey soils. However, the main factors are mineral composition and specific surface area (SSA). Experimental tests on specific surface area and isothermal adsorption of a series of artificial mixed clayey soils were carried out to determine the different types of bound water. On this basis, the relationship between the bound water of mixed clayey soils and influencing factors of mineral composition and specific surface area are discussed. The results show that relative humidities of RH = 0.90 and 0.98, in an isothermal adsorption method, are the boundary-dividing points between strongly bound water and weakly bound water, and between weakly bound water and free water, respectively. The bound water content of the mixed clayey soils increased linearly with the montmorillonite content and specific surface area. Clay’s mineral composition (montmorillonite) was found to be the most fundamental influencing factor.


Sign in / Sign up

Export Citation Format

Share Document