Large-scale triaxial compression tests of geocell-reinforced sand

2019 ◽  
Vol 26 (4) ◽  
pp. 388-395 ◽  
Author(s):  
F. Song ◽  
H. Liu ◽  
B. Yang ◽  
J. Zhao
2018 ◽  
Vol 27 (2) ◽  
pp. 103-113
Author(s):  
Barbara Świtała ◽  
E. Fern

A novel solution for the problem of modelling of soil reinforced with vegetation roots. An extension of the Nor–Sand model and its application to granular saturated or dry, soil–root composites. Model implementation in MATLAB: numerical simulations of drained triaxial compression tests, investigation of the sensitivity of the solution to different values of model parameters. Capturing the most important features of soil–root composites. Accounting for the progressive activation of the root’s strength. Indication of the ability of further model application to large-scale problems, such as slope or dune stability.


2019 ◽  
Vol 265 ◽  
pp. 02001
Author(s):  
Andrei Petriaev ◽  
Victor Ganchits

This paper highlights recent laboratory studies at Emperor Alexander I St. Petersburg State Transport University, using large-scale cylindrical triaxial apparatus, which helped quantify the geogrid performance in railway ballast. The triaxial shear strength tests were conducted on ballast with and without geogrid. Effect of geogrid layers quantity on the ballast stress-strain behaviour were studied. The experimental results indicate that the geogrids have improved ballast bearing capacity up to 25%.


2015 ◽  
Vol 771 ◽  
pp. 104-107
Author(s):  
Riska Ekawita ◽  
Hasbullah Nawir ◽  
Suprijadi ◽  
Khairurrijal

An unconsolidated undrained (UU) test is one type of triaxial compression tests based on the nature of loading and drainage conditions. In order to imitate the UU triaxial compression tests, a UU triaxial emulator with a graphical user interface (GUI) was developed. It has 5 deformation sensors (4 radial deformations and one vertical deformation) and one axial pressure sensor. In addition, other inputs of the emulator are the cell pressure, the height of sample, and the diameter of sample, which are provided by the user. The emulator also facilitates the analysis and storage of measurement data. Deformation data fed to the emulator were obtained from real measurements [H. Nawir, Viscous effects on yielding characteristics of sand in triaxial compression, Dissertation, Civil Eng. Dept., The University of Tokyo, 2002]. Using the measurement data, the stress vs radial strain, stress vs vertical strain, and Mohr-Coulomb circle curves were obtained and displayed by the emulator.


2020 ◽  
Vol 57 (3) ◽  
pp. 448-452 ◽  
Author(s):  
A.S. Lees ◽  
J. Clausen

Conventional methods of characterizing the mechanical properties of soil and geogrid separately are not suited to multi-axial stabilizing geogrid that depends critically on the interaction between soil particles and geogrid. This has been overcome by testing the soil and geogrid product together as one composite material in large specimen triaxial compression tests and fitting a nonlinear failure envelope to the peak failure states. As such, the performance of stabilizing, multi-axial geogrid can be characterized in a measurable way. The failure envelope was adopted in a linear elastic – perfectly plastic constitutive model and implemented into finite element analysis, incorporating a linear variation of enhanced strength with distance from the geogrid plane. This was shown to produce reasonably accurate simulations of triaxial compression tests of both stabilized and nonstabilized specimens at all the confining stresses tested with one set of input parameters for the failure envelope and its variation with distance from the geogrid plane.


Sign in / Sign up

Export Citation Format

Share Document