Anisotropic linear elastic materials subject to undrained plane strain deformation

Géotechnique ◽  
2017 ◽  
Vol 67 (8) ◽  
pp. 728-732 ◽  
Author(s):  
B. Simpson
1988 ◽  
Vol 55 (4) ◽  
pp. 814-817 ◽  
Author(s):  
Peter M. Anderson

Conditions are discussed for which the contact zone at the tip of a two-dimensional interface crack between anisotropic elastic materials is small. For such “small scale contact” conditions combined with small scale yielding conditions, a stress concentration vector uniquely characterizes the near tip field, and may be used as a crack growth parameter. Representative calculations for an interface crack on a representative Cu grain boundary show small contact conditions to prevail, except possibly under large shearing loads.


Author(s):  
Peihua Jing ◽  
Tariq Khraishi ◽  
Larissa Gorbatikh

In this work, closed-form analytical solutions for the plasticity zone shape at the lip of a semi-infinite crack are developed. The material is assumed isotropic with a linear elastic-perfectly plastic constitution. The solutions have been developed for the cases of plane stress and plane strain. The three crack modes, mode I, II and III have been considered. Finally, prediction of the plasticity zone extent has been performed for both the Von Mises and Tresca yield criterion. Significant differences have been found between the plane stress and plane strain conditions, as well as between the three crack modes’ solutions. Also, significant differences have been found when compared to classical plasticity zone calculations using the Irwin approach.


Sign in / Sign up

Export Citation Format

Share Document