Author(s):  
Sang-ok Park ◽  
Jongmin Yoon ◽  
Hochan An ◽  
Jeonggyu Park ◽  
Gyung-Jin Park

As the demands of customers in the modern industry increased, the number of products, and the variety of components has increased. These issues have led to difficulties in product development and production. Modularization of products has advantages such as cost reduction, product development time reduction, and production time reduction. Modular design of products has been studied in the design activities of the modern industry. In this study, a modular design method is proposed to design a modular product based on axiomatic design (AD) and design structure matrix (DSM). AD and DSM are efficiently integrated into the proposed method. Functional requirements and design parameters are defined based on the Independence Axiom of AD, and the zigzagging process of AD is employed for the decomposition of the functional requirements (FRs) and design parameters (DPs). The design sequence is established based on the design matrix. Coupled or functionally close DPs are grouped into a module (Module 1). These modules are efficiently used in the design sequence. DSM is used to modularize the design parameters of the lowest level of axiomatic design. DSM is constructed based on physical interfaces and numerical clustering algorithms are used to identify strongly related components. They are grouped into a module (Module 2). Module 2 is exploited for production and management. Therefore, these two modules for different purposes can be used to increase efficiency in the design and production process. The proposed method is applied to two automobile parts such as the suspension system and cooling system. The results are discussed from the viewpoint of usefulness.


2011 ◽  
Vol 314-316 ◽  
pp. 1607-1611
Author(s):  
Zhong Wei Gong ◽  
Hai Cheng Yang ◽  
Rong Mo ◽  
Tao Chen

Engineering change is an important and complex activity for manufacturing enterprises. In order to improve the efficiency of engineering change, designers should pay different attentions to different nodes of product development network. In that case, a method of classifying the nodes was proposed. First, we proposed a method to cluster the nodes based on design structure matrix; then, we analyzed the indexes for evaluating the importance of nodes and studied the method of classifying the nodes of product development network; finally, the experiment of managing a type of motorcycle engine was employed to validate our method and it showed the correctness of the proposed method.


2010 ◽  
Vol 139-141 ◽  
pp. 1341-1344
Author(s):  
Ting Gui Chen

Due to shortcomings existing in traditional overlapping model, a new extending activity overlapping model based on design structure matrix considering rework and iteration during activities execution is proposed in this article. Firstly, a tradional overlapping model presented by others is introduced. Sencondly, it is expanded to apply to more general situations using design structure matrix. Subsequently, an example deriving from a certain product development process is used in order to illustrate its effeciency and effectiness


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xin Wang ◽  
Bo Luo

The development of customized service is an important way to transform and upgrade China’s mining industry. However, in practice, there remain problems, such as the slow market response speed of service providers and the contradiction between the large-scale development of service providers and the personalized service needs of service demanders. This paper uses the theory and method of service modular design to solve these problems and explores the process-based service modular design method. Service modular design depends largely on the determination of the relationship between service activities and the reasonable division of modules. However, previous research has rarely made use of modular design methods and modeling tools in the mining service context. At the same time, evaluations of the relationship between service activities relying on knowledge and those relying on experience have been inconclusive. Therefore, this paper proposes a service modularization design method based on the fuzzy relation analysis of a design structure matrix (DSM) that solves the optimal module partition scheme. Triangular fuzzy number and fuzzy evidence theory are used to evaluate and fuse the multidimensional and heterogeneous relationship between service activities, and the quantitative processing of the comprehensive relationship between service activities is carried out. On this basis, the service module structure is divided, followed by the construction of the mathematical programming model with the maximum sum of the average cohesion degree in the module and the average coupling degree between modules as the driving goal. The genetic algorithm is used to solve the problem, and the optimal module division result is obtained. Finally, taking the service modular design of SHD coal production enterprises in China as an example, the feasibility of the proposed method is verified.


Author(s):  
Maria Carrascosa ◽  
Steven D. Eppinger ◽  
Daniel E. Whitney

Abstract This model estimates the probability of completing a product development process over time. The Design Structure Matrix (DSM) framework is used to capture the information dependencies between tasks using the concepts of Probability of Change and Impact. The model incorporates a stochastic element that represents the likelihood of changes resulting in task iterations. The model captures the dynamic behavior of a product development process formed by a combination of parallel, serial and coupled tasks. The model relaxes the assumption that coupled tasks take place in a complete parallel or serial iteration. It can be used to compare the development time of the project for different task sequences and overlapping degrees. This tool allows for identification of the leverage points in the system, providing information about the most effective way to reduce development time. This project was a joint effort with a Hewlett-Packard division, and the observations and practical application presented are based on this field experience.


Volume 3 ◽  
2004 ◽  
Author(s):  
Emmanuel Maravelakis ◽  
Nicholas Bilalis ◽  
Aristomenis Antoniadis ◽  
Vassilis Moustakis

Innovation is a major driving force for the economic growth and expansion of companies and the need to innovate has become clear by now. The quality of the decisions during the design phase of a product development process is strongly connected with the assessment of the product, process and organisational innovation dimensions. The developed methodology addresses these three axes, using 30 innovation attributes, in order to obtain a product innovation profile through an innovation survey. This way a range of industry standard Innovation scores called PIP-SCORES (Product Innovation Profile scores -or innovation benchmarks) have been established. So far more than 600 companies coming from a range of industrial sectors that include creative industries, electrical/electronic, fire and safety, footwear, plastics, ceramics and textiles, have participated in this survey and their innovation profiles have been included in the database. The proposed tool benchmarks the product innovation profile of a company with the corresponding innovation scores from companies coming from the same sector. Next, the tool utilises a Design Structure Matrix, for mapping the dependencies between the Innovation Attributes. Furthermore an Innovation Improvement Impact Value for each Attribute is introduced. In order to improve the innovative profile of a company, a considerable amount of resources is needed. Provided that resources are usually limited to most companies, an optimal improvement strategy, based on the Innovation Improvement Impact values is proposed. The proposed tool (I-DSM, Innovation - Design Structure Matrix) aims at improving the innovative performance of a company, by minimizing the product development cycle and by improving the performance of the product development process.


Sign in / Sign up

Export Citation Format

Share Document