scholarly journals PEMBUATAN SENYAWA BERTANDA 131I-MIBG DENGAN PENINGKATAN DOSIS TERAPI

2021 ◽  
Vol 27 (1) ◽  
pp. 37
Author(s):  
Maskur Maskur ◽  
Chairuman Chairuman ◽  
Yono Sugiharto ◽  
Khoirunnisa Fauziah Asyikin ◽  
Triningsih Triningsih ◽  
...  
Keyword(s):  
Scale Up ◽  

PEMBUATAN SENYAWA BERTANDA 131I-MIBG DENGAN PENINGKATAN DOSIS TERAPI. Senyawa bertanda 131I-MIBG telah berhasil diproduksi di Indonesia. Namun, konsentrasi radioaktivitas dan dosis radioaktivitas per botol masih kecil jika dibandingkan dengan produk komersial dari luar negeri yang beredar di pasaran. Saat ini, dosis radioaktivitas = 25 mCi/vial dan konsentrasi = 5 mCi/mL. Permasalahan yang dihadapi jika konsentrasi radioaktivitas dan dosis radioaktivitas per vial ditingkatkan maka produk menjadi tidak stabil dan terurai karena  dampak radiolisis. Produk komersial global umumnya dosis radioaktivitas =100 mCi/vial dan konsentrasi 10 mCi/mL. Pada penelitian ini telah dilakukan upaya peningkatan (scale up) konsentrasi dan dosis radioaktivitas per vial. Metode yang digunakan yaitu dengan meningkatkan jumlah benzyl alkohol dari 9 µL/mL menjadi 10 µL/mL larutan 131I-MIBG. Selain itu, penambahan buffer phosphat yang semula penambahannya dilakukan sebelum proses pemurnian dirubah menjadi setelah proses pemurnian. Hasil penandaan diperoleh 131I-MIBG sebanyak 153 – 254 mCi dengan randemen proses antara 33,60  - 51,94 %. Konsentrasi radioaktivitas cukup besar, yaitu antara 9,80 hingga 25,40 mCi/mL dengan dosis radioaktivitas 100 hingga 222 mCi/vial. Untuk menyesuaikan kebutuhan pasar maka 131I-MIBG produk BATAN dikemas dalam 100 mCi/vial dan konsentrasi 5-13 mCi/mL. Hal ini menunjukkan bahwa pembuatan senyawa bertanda 131I-MIBG dengan peningkatan dosis terapi telah berhasil dilakukan dengan baik.Kata kunci: Senyawa bertanda 131I-MIBG, konsentrasi radioaktivitas, dosis terapi.

Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
RS Barboza ◽  
BR Rocha ◽  
AC Siani ◽  
LMM Valente ◽  
JL Mazzei
Keyword(s):  

2020 ◽  
Vol 119 (820) ◽  
pp. 303-309
Author(s):  
J. Nicholas Ziegler

Comparing the virus responses in Germany, the United Kingdom, and the United States shows that in order for scientific expertise to result in effective policy, rational political leadership is required. Each of these three countries is known for advanced biomedical research, yet their experiences in the COVID-19 pandemic diverged widely. Germany’s political leadership carefully followed scientific advice and organized public–private partnerships to scale up testing, resulting in relatively low infection levels. The UK and US political responses were far more erratic and less informed by scientific advice—and proved much less effective.


2018 ◽  
Author(s):  
Nerea Utrilla Uriarte ◽  
Pedro Gonzalez Fernandez ◽  
Alba Esteban Figueruelo ◽  
Marina Nevares Herrero ◽  
Javier Santamaria Sandi

Sign in / Sign up

Export Citation Format

Share Document