scholarly journals Assessing the potential for managed aquifer recharge (MAR) of the Cape Flats Aquifer

Water SA ◽  
2021 ◽  
Vol 47 (4 October) ◽  
Author(s):  
B Mauck ◽  
K Winter

This paper discusses the potential use of ‘managed aquifer recharge’ (MAR) in Cape Town to provide additional water supplies to the city that are fit-for-purpose. The paper investigates the feasibility of implementing MAR by simulating the artificial recharge of winter stormwater into the Cape Flats Aquifer (CFA), an extensive sandy, unconfined aquifer that covers most of metropolitan Cape Town’s urban landscape. The objective is to assess the storage capacity and supply potential of two MAR sites by modelling various scenarios in order to determine the feasibility of MAR as a viable strategy for achieving improved water security by augmenting groundwater water supply. The selected scenarios demonstrated that MAR could be used to minimise the risk of seawater intrusion and maximise the amount of water available for abstraction from the CFA. Six MAR scenarios provided strong evidence to suggest that there is sufficient storage capacity within the CFA for using stormwater to improve the wellfield yield in two regions of the CFA and which can sustainably yield approximately 18 Mm3 per year. The study concluded that the use of stormwater or treated wastewater could be deliberately used to recharge the CFA and as a viable option in support of the City of Cape Town’s intention to establish a water-resilient city by 2030.

2021 ◽  
Vol 5 (4) ◽  
pp. 1-19
Author(s):  
Joanne Vanderzalm ◽  
Bruce Naumann ◽  
Simon Higginson ◽  
Declan Page ◽  
Andrew Jones ◽  
...  

Managed aquifer recharge (MAR) can improve water security by using aquifers to store water when it is abundant until required for future use and can increase the use of urban stormwater and treated wastewater to reduce the demand on traditional surface water and groundwater supplies. Recently, two Australian examples were showcased internationally as sustainable and economic MAR: Perth’s groundwater replenishment scheme (GWRS) with recycled water to increase security of urban water supply and a multi-site urban stormwater MAR scheme for suburban non-potable water supply in Salisbury, Adelaide. This paper provides a synopsis of these Australian exemplars of sustainable and economic MAR.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1846 ◽  
Author(s):  
Peter Dillon ◽  
Enrique Fernández Escalante ◽  
Sharon B. Megdal ◽  
Gudrun Massmann

Managed aquifer recharge (MAR) is part of the palette of solutions to water shortage, water security, water quality decline, falling water tables, and endangered groundwater-dependent ecosystems. It can be the most economic, most benign, most resilient, and most socially acceptable solution, but frequently has not been implemented due to lack of awareness, inadequate knowledge of aquifers, immature perception of risk, and incomplete policies for integrated water management, including linking MAR with demand management. MAR can achieve much towards solving the myriad local water problems that have collectively been termed “the global water crisis”. This special issue strives to elucidate the effectiveness, benefits, constraints, limitations, and applicability of MAR, together with its scientific advances, to a wide variety of situations that have global relevance. This special issue was initiated by the International Association of Hydrogeologists Commission on Managing Aquifer Recharge to capture and extend from selected papers at the 10th International Symposium on Managed Aquifer Recharge (ISMAR10) held in Madrid, Spain, 20–24 May 2019.


2010 ◽  
Vol 62 (4) ◽  
pp. 792-802 ◽  
Author(s):  
J. C. Radcliffe

The prolonged Australian drought which commenced in 2002, and the agreement between Australia's Commonwealth and States/Territories governments to progress water reform through the National Water Initiative, has resulted in many new recycling projects in Australia's capital cities. Dual reticulation systems are being advanced in new subdivision developments in Sydney, Melbourne and Adelaide. Brisbane has installed three large Advanced Water Treatment Plants that are designed to send indirect potable recycled water to the Wivenhoe Dam which is Brisbane's principal water reservoir. Numerous water recycling projects are serving industry and agriculture. Experimental managed aquifer recharge is being undertaken with wetland-treated stormwater in Adelaide and reverse osmosis treated wastewater in Perth. New National Water Quality Management Strategy recycled water guidelines have been developed for managing environmental risks, for augmentation of drinking water supplies, for managed aquifer recharge and for stormwater harvesting and reuse. Many recent investments are part-supported through Commonwealth government grants. Desalination plants are being established in Melbourne and Adelaide and a second one in Perth in addition to the newly-operational plants in Perth, South-East Queensland and Sydney. Despite there being numerous examples of unplanned indirect potable recycling, most governments remain reluctant about moving towards planned potable recycling. There is evidence of some policy bans still being maintained by governments but the National Water Commission continues to reinforce the necessity of an even-handed objective consideration of all water supply options.


2013 ◽  
Vol 117 ◽  
pp. 115-120 ◽  
Author(s):  
Elise Bekele ◽  
Simon Toze ◽  
Bradley Patterson ◽  
Wolfgang Fegg ◽  
Mark Shackleton ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1869 ◽  
Author(s):  
Anthony Knapton ◽  
Declan Page ◽  
Joanne Vanderzalm ◽  
Dennis Gonzalez ◽  
Karen Barry ◽  
...  

Population growth and increased irrigation demand have caused a decline in groundwater levels that limit water supply in the Darwin rural area. Managed Aquifer Recharge (MAR) is a practical solution that can be adopted to augment stressed groundwater systems and subsequently increase the security of water supply. Aquifer storage capacity is considered to be the primary constraint to MAR where unconfined dolostone aquifers rapidly recharge during the tropical, wet season and drain again in the dry season. As a result, there is a general understanding that aquifers of this nature recharge to full capacity each wet season. However, the aquifer storage capacity and the potential for niche opportunities for MAR to alleviate declining groundwater levels has not previously been examined. This paper uses the Darwin rural area’s Proterozoic Koolpinyah Dolostone aquifer and the existing Koolpinyah Groundwater System to evaluate the prospects of MAR using both infiltration and injection techniques. Direct injection wells in an aquifer storage transfer and recovery (ASTR) scheme were favoured in this area, as injection wells occupy a smaller surface footprint than infiltration basins. This assessment suggested MAR during the early to mid-dry season could alleviate the impact of the dry season decline in groundwater levels in the Darwin rural area. The use of a larger aquifer storage and recovery (ASR) system (5,000,000 m3/year) was also assessed as a potentially viable technical solution in the northern part of the aquifer where it is understood to be confined. The ASR scheme could potentially be scaleable to augment the urban water system and provide strategic long-term storage. Consideration must also be given not only to the strategic positioning of the ASR water bank, but also to the hydrogeology of the aquifers in which the systems would be developed. Not all locations or aquifer systems can successfully support a strategic storage ASR system. Scheme-scale feasibility assessment of an ASR water bank is required. The study reported here is an early phase of a series of investigations that would typically be required to demonstrate the viability of any proposal to apply MAR to increase the reliability of conjunctive groundwater and surface water supplies in stressed water resources systems. It focusses on assessing suitable storage areas in a lateritic aquifer.


2018 ◽  
Vol 97 ◽  
pp. 71-80 ◽  
Author(s):  
Matthew Silver ◽  
Kay Knöller ◽  
Johanna Schlögl ◽  
Christine Kübeck ◽  
Christoph Schüth

Sign in / Sign up

Export Citation Format

Share Document