integrated water management
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 57)

H-INDEX

23
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2610
Author(s):  
George Z. Ndhlovu ◽  
Yali E. Woyessa

Groundwater resources are largely used in rural communities of river basins due to their acceptable water quality and reliability for domestic purposes where little or no treatment is required. However, groundwater resources have been affected by changes in land use, mining activities, agricultural practices, industrial effluent, and urbanisation among anthropogenic influences while climate change impacts and volcanic eruptions have affected its involvement among the natural phenomena. The purpose of the study was to assess groundwater potential in the basin with the use of Analytical Hierarchy Process (AHP), remote sensing, GIS techniques, and groundwater occurrence and movement influencing factors. These factors were used to produce seven thematic maps, which were then assigned weights and scale using an AHP tool, based on their degree of influence on groundwater occurrence and movement. A weighted groundwater potential map was produced with four zones denoted as 0.4% (317 km2) for very good potential; 27% (19,170 km2) for good potential; 61% (43,961 km2) for moderate potential and 12% (8639 km2) for poor potential. Validation, using existing boreholes, showed that 89% were overlain on moderate to very good potential zones and henceforth considered to be a novel approach which is useful for groundwater resources assessment and integrated water management in the basin.


2021 ◽  
Author(s):  
Mohamed BEN-DAOUD ◽  
Badr El Mahrad ◽  
Gabriela Adina Moroșanu ◽  
Ismail Elhassnaoui ◽  
Aniss Moumen ◽  
...  

Abstract This article aims to understand the typologies of stakeholders, their role in the water resources management system in the R’Dom Sub-basin(Morocco), and to identify the current and desired interactions among stakeholders. For this purpose, The MACTOR participatory approach was adopted to involve all key water stakeholders and to analyze their interactions. The action system was characterized by the analysis of related issues and relevant actors on the ground. Thus, ten actors and twelve objectives were identified and assessed in this study. The analysis of stakeholder games allowed to identify the typologies of stakeholders according to their strategic objectives and to evaluate their power, influence and dependence, as well as their convergence in a global water management system. The results show a significant level of convergence among stakeholders despite the existence of certain stakeholders who may be considered autonomous given their low involvement in integrated water management. Furthermore, there was a limited involvement of stakeholders in certain strategic objectives such as capacity building, technical means, and awareness-raising actions. The paper shows the need to generate greater collaborative efforts among water stakeholders involved in the implementation of integrated water resources management in the R'Dom sub-basin.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 121
Author(s):  
Diego Di Curzio ◽  
Sergio Rusi ◽  
Alessia Di Giovanni ◽  
Emanuele Ferretti

The hilly landscape of the Periadric area in Central Italy is characterized by mainly marly–clayey foredeep basin deposits (Plio–Pleistocene age). These lithotypes are generally considered aquicludes, if compared with the regional limestone aquifers of Apennines. However, a coarsening upward trend characterizes the upper portion of this stratigraphic sequence, with arenaceous deposits and even conglomerates on the top. From a geomorphological viewpoint, the areas with coarser outcrops show a flat shape and sub-vertical slopes, like boundaries. At the base of these scarps, springs can be found at the interface between coarse and fine deposits, whereas these arenaceous bodies are actual aquifers. Until now, the hydrodynamics and hydrochemical features of this kind of aquifer have not been investigated deeply, because they have always been considered a worthy water resource. However, they could play a crucial role in integrated water management, especially to cope with climate changes and drought periods. Considering these, the main purpose of this study was to investigate from a hydrogeological point of view and to assess the groundwater quantity and quality. Five examples throughout the Abruzzo region were considered. For evaluation and comparisons between water resources, the water volume that infiltrates yearly at each squared kilometer of an aquifer (Mm3/y/km2) was applied. This value was calculated through three different approaches to provide a recharge estimation for this kind of aquifer that is as exhaustive and representative as possible. The results allowed us to characterize the hydrogeological model and to quantify the resources between 0.1 and 0.16 Mm3/y/km2, to be suitable for multi–purpose utilization.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2148
Author(s):  
Jonathan A. Lafond ◽  
Silvio J. Gumiere ◽  
Virginie Vanlandeghem ◽  
Jacques Gallichand ◽  
Alain N. Rousseau ◽  
...  

Integrated water management has become a priority for cropping systems where subirrigation is possible. Compared to conventional sprinkler irrigation, the controlling water table can lead to a substantial increase in yield and water use efficiency with less pumping energy requirements. Knowing the spatiotemporal distribution of water table depth (WTD) and soil properties should help perform intelligent, integrated water management. Observation wells were installed in cranberry fields with different water management systems: Bottom, with good drainage and controlled WTD management; Surface, with good drainage and sprinkler irrigation management; Natural, without drainage, or with imperfectly drained and conventional sprinkler irrigation. During the 2017–2020 growing seasons, WTD was monitored on an hourly basis, while precipitation was measured at each site. Multi-frequential periodogram analysis revealed a dominant periodic component of 40 days each year in WTD fluctuations for the Bottom and Surface systems; for the Natural system, periodicity was heterogeneous and ranged from 2 to 6 weeks. Temporal cross correlations with precipitation show that for almost all the sites, there is a 3 to 9 h lag before WTD rises; one exception is a subirrigation site. These results indicate that automatic water table management based on continuously updated knowledge could contribute to integrated water management systems, by using precipitation-based models to predict WTD.


2021 ◽  
Vol 1 (1) ◽  
pp. 22
Author(s):  
Ida Bagus Rabindra ◽  
Titiek Poerwanti Debora ◽  
Ina Krisantia

<p>This article interprets the perception and aspirations of the city community, as a cornerstone of drafting the design criteria of a community-based city park landscape, which is effective and sustainable. Flooding and drought problems in Jakarta and surrounding areas should be resolved in a comprehensive, integrated and sustainable manner. Referring to the Water Sensitive Urban Design (WSUD) which is an innovation in integrated water management, it is recommended to develop the function of detention and retention ponds as part of storm drainage system, replacing conventional system. Development of the city park landscape criteria as the synergies of the RTH function and the detention/retention ponds should be approached in a very careful, avoiding fatal malfunction and harsh rejection of the user community. The best approach should be done through tracing the needs, desires and expectations of the city community as the ‘end user' as well as 'super client' of the city park. Research on the perception and aspirations of the city community on the idea of the development of City Park with the role of retention/retention ponds has been conducted between February to May 2020 in Jabodetabek. <strong></strong></p>


Author(s):  
Alireza Rezaee ◽  
Omid Bozorg-Haddad ◽  
Ronny Brendtsson ◽  
Vijay P. Singh

Abstract Improper utilization of water resources has the potential to result in reduced availability of high-quality water and adverse effects on societal development. In fact, what appears to be a serious gap in comprehensive water resources studies is the lack of a coherent approach that can link different social, economic and environmental parts within the framework of the integrated water management paradigm to extract strategies and operational plans. Comprehensive water resources management (CWRM) is a process that intends to develop and manage water, land and other resources in a way that maximizes the social and economic well-being of human societies, without compromising the integrity and sustainability of vital ecosystems and future benefits. This chapter discusses the definitions of integrated and comprehensive water resources management describing the steps of using integrated management in practical examples.


Water Policy ◽  
2021 ◽  
Author(s):  
Inkyung Cho ◽  
Eunnyeong Heo ◽  
Jungkyu Park

Abstract In 2018, the Korean government established a legal foundation for integrated water management. Accordingly, various measures for integrated water management were taken, and water R&D is being integrated with the Ministry of Environment. Strategic planning is needed for the efficient implementation of integrated large-scale water R&D. This study aims to analyze the efficiency of large-scale R&D programs in the field of water resources conducted by the Korean government and identify matters of priority for planning future water resources R&D programs. An empirical analysis was conducted using DEA, in particular, a non-radial SBM model was applied to consider slacks in the input and output variables. The results showed that the efficiency of collaborative R&D projects was relatively lower than that of single projects. Further, corporate research institutes, which are typically considered as the leaders of technological innovation, were found to have conducted projects less efficiently than universities or public research institutes. Based on these results, this study recommends that: (1) a system to maximize the advantages of collaborative research should be established; (2) institutional support to enhance the enterprise's innovative activities should be prepared; and (3) comprehensive, long-term planning for integrated water management should be implemented.


Sign in / Sign up

Export Citation Format

Share Document