Wrench faulting and trap breaching: A case study of the Kizler North Field, Lyon County, Kansas, USA

2021 ◽  
Vol 2 ◽  
pp. 1-14
Author(s):  
Md Nahidul Hasan ◽  
Sally Potter-McIntyre ◽  
Steve Tedesco

The Kizler North Field in northwest Lyon County, Kansas, is a producing field with structures associated with both uplift of the Ancestral Rockies (Pennsylvanian to early Permian) and reactivation of structures along the Proterozoic midcontinent rift system (MRS), which contributed to the current complex and poorly understood play mechanisms. The Lower Paleozoic dolomitic Simpson Group, Viola Limestone, and “Hunton Group” are the reservoir units within the field. These units have significant vuggy porosity, which is excellent for field potential; however, in places, the reservoir is inhibited by high water saturation. The seismic data show that two late-stage wrench fault events reactivated existing faults. The observed wrench faults exhibit secondary P, R’, and R Riedel shears, which likely resulted from Central Kansas uplift-MRS wrenching. The latest stage event breached reservoir caprock units during post-Mississippian to pre-Desmoinesian time and allowed for hydrocarbon migration out of the reservoirs. Future exploration models of the Kizler North and analog fields should be based on four play concepts: 1) four-way closure with wrench-fault-related traps, 2) structural highs in the Simpson Group and Viola Limestone, 3) thick “Hunton Group,” and 4) presence of a wrench fault adjacent to the well location that generates subtle closure but not directly beneath it, which causes migration out of reservoirs. In settings where complex structural styles are overprinted, particular attention should be paid to the timing of events that may cause breaches of seals in some structures but not others. Mapping the precise location and vertical throw of the reactivated wrench faults using high-resolution seismic data can help reduce the drilling risk in analog systems.

1994 ◽  
Vol 31 (4) ◽  
pp. 652-660 ◽  
Author(s):  
John L. Sexton ◽  
Harvey Henson Jr.

The interpretation of 1047 km of seismic reflection data collected in western Lake Superior is presented along with reflection traveltime contour maps and gravity models to understand the overall geometry of the Midcontinent Rift System beneath the lake. The Douglas, Isle Royale, and Keweenaw fault zones, clearly imaged on the seismic profiles, are interpreted to be large offset detachment faults associated with initial rifting. These faults have been reactivated as reverse faults with 3–5 km of throw. The Douglas Fault Zone is not directly connected with the Isle Royale Fault Zone. The seismic data has imaged two large basins filled with more than 22 km of middle Keweenawan pre-Portage Lake and Portage Lake volcanic rocks and up to 8 km of upper Keweenawan Oronto and Bayfield sedimentary rocks. These basins persisted throughout Keweenawan time and are separated by a ridge of Archean rocks and a narrow trough bounded by the Keweenaw Fault Zone to the south. Another fault zone, herein named the Ojibwa fault zone, previously interpreted as the northeastern extension of the Douglas Fault Zone, has been reinterpreted as a reverse fault that closely follows the ridge of Archean rocks. Previous researchers have stated that neighboring segments of the rift display alternating polarity of basins associated with large detachment faults. Accommodation zones have been previously interpreted to exist between rift segments; however, the seismic data do not image a clearly identifiable accommodation zone separating the two basins in western Lake Superior. Thus, the seismic profile may lie directly above the pivot of a scissors-type accommodation fault zone, there is no vertical offset associated with the zone, or the zone does not exist. Seismic data interpretations indicate that application of a simple alternating polarity basin – accommodation zone model is an oversimplification of the complex geological structures associated with the Midcontinent Rift System.


2016 ◽  
Author(s):  
Benjamin J. Drenth ◽  
◽  
Raymond R. Anderson ◽  
Klaus J. Schulz ◽  
Joshua M. Feinberg ◽  
...  

2016 ◽  
Author(s):  
Connie L. Dicken ◽  
◽  
Suzanne W. Nicholson

2018 ◽  
Author(s):  
Laurel G. Woodruff ◽  
◽  
Suzanne W. Nicholson ◽  
Connie L. Dicken ◽  
Klaus J. Schulz

1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


1985 ◽  
Vol 13 (1) ◽  
pp. 345-383 ◽  
Author(s):  
W R Van Schmus ◽  
W J Hinze

Sign in / Sign up

Export Citation Format

Share Document