wrench fault
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 2 ◽  
pp. 1-14
Author(s):  
Md Nahidul Hasan ◽  
Sally Potter-McIntyre ◽  
Steve Tedesco

The Kizler North Field in northwest Lyon County, Kansas, is a producing field with structures associated with both uplift of the Ancestral Rockies (Pennsylvanian to early Permian) and reactivation of structures along the Proterozoic midcontinent rift system (MRS), which contributed to the current complex and poorly understood play mechanisms. The Lower Paleozoic dolomitic Simpson Group, Viola Limestone, and “Hunton Group” are the reservoir units within the field. These units have significant vuggy porosity, which is excellent for field potential; however, in places, the reservoir is inhibited by high water saturation. The seismic data show that two late-stage wrench fault events reactivated existing faults. The observed wrench faults exhibit secondary P, R’, and R Riedel shears, which likely resulted from Central Kansas uplift-MRS wrenching. The latest stage event breached reservoir caprock units during post-Mississippian to pre-Desmoinesian time and allowed for hydrocarbon migration out of the reservoirs. Future exploration models of the Kizler North and analog fields should be based on four play concepts: 1) four-way closure with wrench-fault-related traps, 2) structural highs in the Simpson Group and Viola Limestone, 3) thick “Hunton Group,” and 4) presence of a wrench fault adjacent to the well location that generates subtle closure but not directly beneath it, which causes migration out of reservoirs. In settings where complex structural styles are overprinted, particular attention should be paid to the timing of events that may cause breaches of seals in some structures but not others. Mapping the precise location and vertical throw of the reactivated wrench faults using high-resolution seismic data can help reduce the drilling risk in analog systems.


2021 ◽  
Author(s):  
Frank Mattern ◽  
Robert Bolhar ◽  
Andreas Scharf ◽  
Katharina Scharf ◽  
Paul Mattern ◽  
...  

<p>The geology of the Oman Mountains was shaped by the SW-directed obduction of allochthonous deep-sea rocks (Hawasina), trench-facies rocks (Haybi) and oceanic lithosphere (Semail Ophiolite) onto Arabian autochthonous shelf carbonates during the Late Cretaceous. Locally, the resulting obduction orogen was overprinted by significant post-obductional extension. NNE-directed extension occurred during at least two episodes which took place from the latest Cretaceous to early Eocene and late Eocene to Oligocene/Miocene, respectively. Moreover, the Oman Mountains, between the eastern Batinah Coastal Plain and the Sur area (Qalhat Fault) display numerous ~N/S-oriented folds and reverse faults. These structures overprinted mid-Eocene to at least Oligocene/Miocene formations (i.e., the Seeb to Barzaman formations).</p><p>Detailed structural/field work and satellite image analyses provide ample evidence that these ~N/S-compressional features are cogenetic with ~WNW to NW-striking sinistral faults. All these post-mid-Eocene structures are part of one major left-lateral WNW- to NW-striking shear zone from the Batinah Coastal Plain in the NW to the Batain area in the SE. Sinistral shearing is localized along the southwestern margin of the Saih Hatat Dome, crosses the Fanja area and continues to the northern part of the Jabal Akhdar Dome (Jabal Nakhl Subdome). The straight southwestern margin of the Saih Hatat Dome may correlate with a Permo-Triassic major extensional fault, active during the Pangea rifting. Shearing also affected rocks northeast of this zone, i.e., within the Salma Plateau and the Rusayl Embayment. Thus, shearing affected an area of 250 km by 40 km in width. We term this shear zone hereafter the “Hajar Shear Zone” (HSZ). The amount of sinistral shearing is unknown due to the absence of markers and wide strain distribution, but is likely to be at the order of a few tens of kilometers.</p><p>The cause for the WNW-directed sinistral shearing is the overall E/W-directed shortening between the Arabian and Indian plates. During shortening, a pre-existing WNW-striking basement fault zone was reactivated, creating the HSZ. A G-Plates reconstruction between the two plates reveals an ~8° counter-clockwise rotation of India (with respect to fixed Arabia) between 32.5 and 20 Ma, resulting in ~150 km E/W-shortening between both plates at the easternmost tip of Arabia. The area northeast of the HSZ underwent most E-W-shortening. The 150 km interplate E/W-shortening is the maximum value for sinistral shearing along the HSZ and other faults. Some of the shortening may have been absorbed offshore Oman across the Owen Basin and/or along the continental/oceanic transitions of both plates.</p>


2020 ◽  
Vol 26 (4) ◽  
pp. 449-462
Author(s):  
Olufeyisayo Ilesanmi ◽  
Xue Liang ◽  
Francisca E. Oboh-Ikuenobe ◽  
J. David Rogers ◽  
Mohamed Abdelsalam ◽  
...  

ABSTRACT Unmanned aerial systems (UAS) provide a framework for recording perishable surficial data or information. Open fractures exhibiting regular en-echelon patterns were captured by a 12-megapixel, FL-9 mm camera attached to a Phantom IV UAS over the epicenter of the magnitude (Mw) 5.8 earthquake of September 3, 2016, 15 months later. The Digital Surface Models (DSMs) and orthoimagery offered a spatial resolution (∼1 cm) sufficient to identify small-scale plastic deformations that appear to be controlled by en-echelon joint sets developed in the underlying formation. The fissure boundaries and intersections are remarkably linear and sharp. They appeared to have been recently formed, presumably by seismic swarms believed to have been associated with wastewater injection. The DSMs revealed a series of conjugate patterns suggestive of regional systematic joints with apparent subsidence of infilling up to 50 cm. The earthquakes emanated from the Precambrian metamorphic basement, with epicentral clusters at ∼5- and 8-km depths. Low energy release from depths >1.5 km appears to be locally attenuated by an unconsolidated “soil cap,” which likely formed an impedance contrast. The maximum deformation direction from the cumulative energy of earthquakes correlates with a wrench fault tectonics model that could conceivably produce the observed en-echelon joint sets observed in the orthoimagery and DSMs. These features were observed within 275 m of the reported Mw 5.8 epicenter. The remarkably linear repeating pattern of deformation appears to express fissures that preserve the wrench fault fractures generated by the Mw 5.8 earthquake emanating from discontinuity suites within marine sandstone, shale, and limestone of Pennsylvanian to Permian age.


2020 ◽  
Vol 68 ◽  
pp. 171-193
Author(s):  
Line Bayer Winslow ◽  
Stig A. Schack pedersen ◽  
Lars Ole Boldreel ◽  
Egon Nørmark

Wrench-fault structures below Danian limestone and Palaeogene marl, and an overlying structural framework of Quaternary glacial deposits in north-east Sjælland, Denmark, are interpreted from two vibro-seismic sections recorded to 600 msec TWT depth. The main seismic section is 6.3 km long, N–S oriented, and intersected by a 0.7 km long, E–W oriented satellite seismic section. In addition, boreholes in the vicinity of the seismic profile are used for the interpretation. The sections were acquired in 2014 along the western shoreline of the lake Esrum Sø in the Gribskov area. In the lower part of the seismic section (the interval 100–300 msec TWT), parallel-bedded geological layers occur along most of the profile apart from six locations, where six wrench-fault structures displace the upper part of the Chalk Group and lower Palaeogene marl. The northernmost of the six wrench-fault locations correlates to the eastern slope of the buried Esrum–Alnarp valley, which suggests that the valley is an inherited tectonic feature. The location of the wrench- fault structures supports the outline of faults related to the Sorgenfrei-Tornquist Zone on previous geological maps, which had almost no seismic data from the area. Above the stratigraphic level presented by the Danian limestone and lower Palaeogene marl, a composite glaciotectonic complex comprising two glaciodynamic sequences is recognized by e.g. thrust-fault structures and the lithostratigraphy of glacial successions recorded in the wells. In parts of the seismic sections, the lowermost level of the glaciotectonic complex inherited the wrench-tectonic fault structures, most significantly seen in the northern segment. The advance of the Scandinavian ice sheet caused the glaciotectonic structures displayed in the seismic section. The two sequences represent events related to the Norwegian and the Swedish glacial advances. From the interpretation of the seismic section it is found that the glaciotectonic complex conceals the wrench-tectonic flower structures.


Author(s):  
Jemi Saputra Ahnaf ◽  
Aton Patonah ◽  
Haryadi Permana ◽  
Ismawan Ismawan

The research aimed to reconstruct the geological structures and tectonics of the Bayah complex area. The structures found that grouped into regional structural patterns used to determine the ages and the events that responsible to its formation. The methods used in this research include field and studio method. Field method carried out to map the outcrops and record geological structures data using geological compass, GPS, tape measurement, and geological hammer, while studio method performed to process and analyze data using software such as Win Tensor, Dips, MapInfo Professional 10.5 and CorelDraw X4. The geological structure of the Bayah has varying patterns and ages. The fracture patterns show N-S and E-W direction which is belong to Sundanese and Java Pattern formed in range of the Early Eocene to Pliocene. While the faults that have direction of SW-NE and E-W are classified into Meratus and Java Pattern. However, metamorphic rock foliations show NW-SE and N-S direction that belonging to the Pre-Tertiary Sumatra Pattern. The three faults of this research are estimated to be formed by the effect of orogenesis that occurring in different events and ages. JSA-014 fault is predicted to form due to orogeny I or orogeny II in the Early Oligocene - Middle Miocene, this fault classified as the 2nd order right lateral wrench fault. JSA-034 fault is formed by orogeny I in Early Oligocene - Middle Miocene, this fault is also classified as the 2nd order right lateral wrench fault. While JSA-080 fault has relatively young age that formed due to orogeny III in the Middle Miocene - Pliocene and belonging to the 3rd order left lateral wrench fault.


2017 ◽  
Vol 122 (12) ◽  
pp. 10,478-10,497 ◽  
Author(s):  
Lei Huang ◽  
Chi-yang Liu

Sign in / Sign up

Export Citation Format

Share Document