scholarly journals Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia

2010 ◽  
Vol 5 (No. 1) ◽  
pp. 1-9 ◽  
Author(s):  
G. Barančíková ◽  
J. Halás ◽  
M. Gutteková ◽  
J. Makovníková ◽  
M. Nováková ◽  
...  

Soil organic matter (SOM) takes part in many environmental functions and, depending on the conditions, it can be a source or a sink of the greenhouse gases. Presently, the changes in soil organic carbon (SOC) stock can arise because of the climatic changes or changes in the land use and land management. A promising method in the estimation of SOC changes is modelling, one of the most used models for the prediction of changes in soil organic carbon stock on agricultural land being the RothC model. Because of its simplicity and availability of the input data, RothC was used for testing the efficiency to predict the development of SOC stock during 35-year period on agricultural land of Slovakia. The received data show an increase of SOC stock during the first (20 years) phase and no significant changes in the course of the second part of modelling. The increase of SOC stock in the first phase can be explained by a high carbon input of plant residues and manure and a lower temperature in comparison with the second modelling part.

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 946 ◽  
Author(s):  
Lorenzo D’Avino ◽  
Claudia Di Bene ◽  
Roberta Farina ◽  
Francesco Razza

The production of a biomass as a feedstock for biorefinery is gaining attention in many agricultural areas. The adoption of biorefinery crops (i.e., perennial cardoon) can represent an interesting option for farmers and can contribute to increase soil organic carbon stock (SOCS). The study aimed to assess the potential effect on long-term SOCS change by the introduction of cardoon in a Mediterranean marginal area (Sassari, Italy). To this end, three process-oriented models, namely the Intergovernmental Panel on Climate Change (IPCC) guidelines for national greenhouse gas inventories (Tier 2), a humus-balance model (SOMBIT) and Rothamsted carbon model (RothC), were used to compare two scenarios over 20 years. The traditional cropping system’s faba bean–durum wheat biennial rotation was compared with the same scenario alternating seven years of cardoon cultivation. The model’s calibration was performed using climate, soil and crop data measured in three cardoon trials between 2011 and 2019. SOMBIT and Roth C models showed the best values of model performance metrics. By the insertion of cardoon, IPCC tool, SOMBIT and RothC models predicted an average annual SOCS increase, whereas, in the baseline scenario, the models predicted a steady state or a slight SOCS decrease. This increase can be attributed to a higher input of above- and belowground plant residues and a lower number of bare soil days (41 vs. 146 days year−1).


2021 ◽  
Vol 46 (1) ◽  
pp. 49-60
Author(s):  
MJ Uddin ◽  
Arafat Rahman ◽  
AHM Zulfiquar Ali ◽  
Md Khalilur Rahman

Wetland basin soils are the major store houses of organic carbon where there is a scope to use this carbon in mitigating the climate change. A study was conducted in these basin soils at 100 cm depth regarding their carbon stock. The study showed that total soil organic carbon (SOC) stock in the Sylhet basin soils of Bangladesh is 0.094 Pg where the SOC stock was 0.044 Pg in medium low land sites and it was about 0.050 Pg in lowland sites. There was no previous study on SOC stock in the Sylhet basin soils of Bangladesh. These may act as benchmark SOC stock datasets for the future agricultural planning. The soil organic carbon stock is higher in the lowland than medium lowland sites. The contents of SOC are low is compared to its threshold levels. Moreover, it is apprehended that basin soils may lose their carbon due to the decrease of inundation level by climate change, and other eco-environmental changes. So, it is very much urgent to take steps in preserving the organic carbon of lowland basin soils. Asiat. Soc. Bangladesh, Sci. 46(1): 49-60, June 2020


2017 ◽  
Vol 16 (1) ◽  
pp. 25
Author(s):  
Rashmi Baruah ◽  
Binoy K. Medhi ◽  
D.K. Patgiri ◽  
D. Bhattacharyya ◽  
C.R. Deka

2021 ◽  
Vol 782 ◽  
pp. 146821
Author(s):  
Florent Noulèkoun ◽  
Emiru Birhane ◽  
Habtemariam Kassa ◽  
Alemayehu Berhe ◽  
Zefere Mulaw Gebremichael ◽  
...  

2013 ◽  
Vol 10 (5) ◽  
pp. 866-872 ◽  
Author(s):  
Xiao-guo Wang ◽  
Bo Zhu ◽  
Ke-ke Hua ◽  
Yong Luo ◽  
Jian Zhang ◽  
...  

2019 ◽  
Vol 23 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Claudia Canedoli ◽  
Chiara Ferrè ◽  
Davide Abu El Khair ◽  
Emilio Padoa-Schioppa ◽  
Roberto Comolli

2015 ◽  
Vol 4 (1) ◽  
pp. 161-178
Author(s):  
Davood A. Dar ◽  
Bhawana Pathak ◽  
M. H. Fulekar

 Soil organic carbon (SOC) estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC) and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms) under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178


Soil Science ◽  
2011 ◽  
Vol 176 (2) ◽  
pp. 110-114 ◽  
Author(s):  
Sriroop Chaudhuri ◽  
Eugenia M. Pena-Yewtukhiw ◽  
Louis M. McDonald ◽  
Jeffrey Skousen ◽  
Mark Sperow

Sign in / Sign up

Export Citation Format

Share Document