ROTATIONS OF TORI IN A LIQUID CRYSTAL STRUCTURE

Author(s):  
A.M. Bubenchikov ◽  
◽  
M.A Bubenchikov ◽  
D.V. Mamontov ◽  
D.S. Kaparulin ◽  
...  

Liquid crystals are a collection of flattened molecules. On the one hand, they have a welldefined structure, on the other hand, this structure is deformable, since its elements can change their position in space. In columnar structures, consisting of disks, plates, and tori, the fluid lines and cords are distinguished. In the case of tori and circular disks, a hexagonal structure of the arrangement of molecules is observed in a combination of the cord. The aim of this work is to obtain the stability of tori positions in an elementary fragment of a liquid crystal and to analyze their rotations in a self-consistent field of the surrounding toroidal molecules. To solve this problem, the method of mathematical modeling was used, based on classical models of molecular dynamics. The calculation is carried out on the basis of the model of cross-atom-atom interactions for molecular tori. The minimal fragment of the cord is selected, which makes it possible to determine the characteristic dynamic state of the central torus in the fragment. To describe the motion of the molecular tori, the equations of motion for their centers of mass and the Euler equations for their angular displacements are used. The minimal fragment of the material contains twenty-nine tori. The equations for displacements of the centers of mass of the tori are initially represented as ordinary differential equations of the second order. However, by introducing fictitious points into the consideration of velocities, they can be reduced to a system of first-order equations with a doubled number of lower-order equations. The resulting system of the first-order differential equations is integrated numerically using a highorder accuracy step-by-step scheme. All calculations are performed with a constant time step. The accuracy of the obtained numerical results is verified in terms of the balance of total energy of the system. Calculations show that the central torus of the presented fragment executes angular oscillations around its main axis with amplitude of more than one revolution. Thus, the performed calculations show that a representative fragment of the liquid crystal structure of molecular tori can be used as a generator of high-frequency mechanical vibrations.

Author(s):  
M.A. Bubenchikov ◽  
◽  
A.M. Bubenchikov ◽  
D.V. Mamontov ◽  
◽  
...  

The aim of this work is to apply classical mechanics to a description of the dynamic state of C20@C80 diamond complex. Endohedral rotations of fullerenes are of great interest due to the ability of the materials created on the basis of onion complexes to accumulate energy at rotational degrees of freedom. For such systems, a concept of temperature is not specified. In this paper, a closed description of the rotation of large molecules arranged in diamond shells is obtained in the framework of the classical approach. This description is used for C20@C80 diamond complex. Two different problems of molecular dynamics, distinguished by a fixing method for an outer shell of the considered bimolecular complex, are solved. In all the cases, the fullerene rotation frequency is calculated. Since a class of possible motions for a single carbon body (molecule) consists of rotations and translational displacements, the paper presents the equations determining each of these groups of motions. Dynamic equations for rotational motions of molecules are obtained employing the moment of momentum theorem for relative motions of the system near the fullerenes’ centers of mass. These equations specify the operation of the complex as a molecular pendulum. The equations of motion of the fullerenes’ centers of mass determine vibrations in the system, i.e. the operation of the complex as a molecular oscillator.


2008 ◽  
Vol 77 (3) ◽  
Author(s):  
A. Hammarquist ◽  
K. D’Havé ◽  
M. Matuszczyk ◽  
N. A. Clark ◽  
J. E. Maclennan ◽  
...  

2021 ◽  
pp. 127847
Author(s):  
Yongmo Lv ◽  
Shaoyun Yin ◽  
Yi Liu ◽  
Zhe Li ◽  
Peng Li ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (72) ◽  
pp. 41472-41479 ◽  
Author(s):  
Reo Amano ◽  
Péter Salamon ◽  
Shunsuke Yokokawa ◽  
Fumiaki Kobayashi ◽  
Yuji Sasaki ◽  
...  

A micro-pixelated pattern of a nematic liquid crystal formed by self-organization of topological defects is shown to work as a tunable two-dimensional optical grating.


1998 ◽  
Vol 213 (1) ◽  
pp. 45-52 ◽  
Author(s):  
M. Guena ◽  
M. Le Gall ◽  
L. Dupont

Sign in / Sign up

Export Citation Format

Share Document