dielectric surface
Recently Published Documents


TOTAL DOCUMENTS

608
(FIVE YEARS 86)

H-INDEX

38
(FIVE YEARS 5)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Stefano Bellucci ◽  
Volodymyr Fitio ◽  
Iryna Yaremchuk ◽  
Oleksandr Vernyhor ◽  
Yaroslav Bobitski

In this work the features of the resonance in a rectangular dielectric surface-relief gratings, illuminated with a limited cross-section Gaussian beam, have been studied. The rigorous coupled wave method and beam decomposition into the plane waves by the Fourier transform have been used. It is shown that there is a resonant wavelength for each thickness of the dielectric grating. The value of resonant wavelength depends on the beam angle of incidence on the gratings. Moreover, the two types of resonances can occur in the grating at certain grating parameters. The power reflection coefficient is practically equal to unity for the first type of resonance and is much smaller than unity, for the second one. The obtained results extend the knowledge regarding the nature of the waveguide resonance in the dielectric grating, considering the limited cross section beam, and they can increase its use in many applications.


2021 ◽  
Vol 37 (1) ◽  
pp. 015015
Author(s):  
Yogesh Yadav ◽  
Samarendra Pratap Singh

Abstract The semiconductor/dielectric interface is arguably the most important region in field-effect transistors. This article investigates the performance-enhancing effects of passivation of the dielectric surface by a self-assembled layer (SAM) of silanes on organic field-effect transistors. Apart from conventional figures of merit for the devices, the energetic distribution of the density of the in-gap trap-states (trap-DOS) and the contact resistance are evaluated using numerical methods. The investigation reveals that the surface passivation of the dielectric SiO2 has a dual effect on device operation. Firstly, it establishes quantitatively that the surface passivation leads to a significant reduction in the density of both shallow and deep traps in the organic semiconductor PBTTT-C14. This effect outweighs the impact of the SAM dipoles on the device turn-on. Secondly, the contact resistance gets lowered by a factor of more than 10 due to the improved top-surface morphology of the PBTTT-C14 thin film. The lower contact resistance in devices is corroborated by lower contact potential difference between PBTTT-C14 and gold, measured using scanning kelvin probe microscopy.


Author(s):  
Jie Liu ◽  
Lijun Wang ◽  
Xin Lin ◽  
Runming Zhang

Abstract A two dimensional (2D) axisymmetric fluid model is built to investigate the effect of different O2 and H2O admixture on the plasma dynamics and the distribution of reactive species in He atmospheric pressure plasma jet (APPJ). The increase of O2: H2O ratio slows down both the intensity and the propagation speed of ionization wave. Due to the decrease of both H2O ionization rate and H2O Penning ionization as well as the stronger electronegativity of O2, the increase of O2: H2O ratio results in a significant reduction of electron density in the APPJ, which restricts the occurrence of electron collision ionization reactions and inhibits the propagation of plasma. The excitation energy loss of O2 is not the reason for the weakening of the plasma ionization wave. The densities of O2+, O- and O2- increase with the rise of O2 admixture while H2O+ decreases due to the decrease of electron density and H2O concentration. OH- density is affected by both the increase of O- and the decrease of H2O so it shows peak in the case of O2: H2O=7:3. O is mainly produced by the excitation reactions and the electron recombination reaction (e + O2+ → 2O), which is directly related to the O2 concentration. OH is mainly produced by e + H2O → e + H + OH so the OH density decreases due to the decrease of electron density and H2O concentration with the increase of O2: H2O ratio. On the dielectric surface when the propagation of streamer extinguishes, O flux shows an upward trend while the OH flux decreases, and the propagation distance of O and OH decreases with the increase of O2: H2O ratio.


Author(s):  
Ting Huang ◽  
Yan Zhang ◽  
Haonan Liu ◽  
Ruiqiang Tao ◽  
Chunlai Luo ◽  
...  

Abstract In this work, we systematically investigated the carrier transport of hysteresis-free amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) incorporating high-k (HfO2)x(Al2O3)y gate dielectrics with different composition and permittivity by atomic layer deposition (ALD). A dielectric surface morphology dominated interface scattering carrier transport mechanism is demonstrated, and the effect of the dielectric polarization and the interface states on the carrier mobility is discovered in TFT devices gated by high quality dielectrics with negligible charge trap effect. Accordingly, an a-IGZO TFT gated by (HfO2)0.5(Al2O3)0.5 dielectric with the smoothest surface exhibits the best performance in terms of a preferable field-effect mobility of 18.35 cm2 V-1 s-1, a small subthreshold swing of 0.105 V decade-1, a high on/off current ratio of 4.6× 106, and excellent stability under positive bias stress.


2021 ◽  
Author(s):  
Sandeep Kumar ◽  
Shivani Vij ◽  
Niti Kant ◽  
Vishal Thakur

Abstract We purpose a theoretical analysis for the generation of efficient terahertz (THz) radiation by using the nonlinear interaction of Gaussian laser beam with vertically aligned anharmonic, and rippled carbon nanotubes (CNTs) array. This array of vertically aligned carbon nanotubes (VA-CNTs) is embedded on the base of the dielectric surface. The VA-CNTs have been magnetized by applying a static magnetic field mutually perpendicular to the direction of propagation of the Gaussian beam and length of CNTs. The Gaussian laser beam passing through the CNTs exerts a nonlinear ponderomotive force on the electrons of CNTs and provides them resonant nonlinear transverse velocity. This produces the nonlinear current which is further responsible for the generation of THz radiation. The anharmonicity plays a vital role in the efficient generation of THz radiation. The anharmonicity arises due to the nonlinear variation of restoration force on the various electrons of CNTs. This anharmonicity in the electrons of CNTs helps in broadening the resonance peak. We have observed that externally applied static magnetic field 110 kg to 330 kg) also paves the way for the enhancement of the normalized THz amplitude.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 504
Author(s):  
Rafael Quintero-Torres ◽  
Jorge Luis Domínguez-Juárez ◽  
Mariia Shutova ◽  
Alexei V. Sokolov

We study the effect of oblique illumination on the functioning of a plasmonic nanoantenna for chiral light. The antenna is designed to receive a structured beam of light and produce a nanosized near-field distribution that possesses nonzero orbital angular momentum. The design consists of metal (gold) microrods laid on a dielectric surface and is compatible with well-developed nanofabrication techniques. Experimental arrangements often require such an antenna to operate in a tilted geometry, where input light is incident on the antenna at an oblique angle. We analyze the limitations that the angled illumination imposes and discuss approaches to mitigate these limitations. Through our numerical simulations, we find that tilt angles require modifications to the antenna design. Our analysis can guide current and future experimental configurations to push the limits of resolution and sensitivity.


2021 ◽  
Author(s):  
Ange-Christian Iradukunda ◽  
David Huitink ◽  
Tarek Gebrael ◽  
Nenad Miljkovic

Abstract Power densification and rising module heat losses cannot be managed by traditional “external-to-case” cooling solutions. This is especially pronounced in high voltage systems, where intervening layers of insulating material between the power devices and cooling solution need to be sufficiently thick to provide adequate voltage isolation. As operating voltages increase, the required thicknesses for these insulating layers become so large that they limit the ability to extract the heat. A direct cooling approach that addresses voltage separation issues represents a unique opportunity to deliver coolant to the hottest regions, while opening up the opportunity for increased scaling of power electronics modules. However technical concerns about long-term performance of coolants and their voltage isolation characteristics coupled with integration challenges impede adoption. Here, the reliability and performance of voltage blocking strategies, namely dielectric fluids and dielectric surface coatings, are examined to advance the feasibility of a direct cooling approach for improved thermal management of high-voltage, high-power module. The breakdown voltage of the dielectric fluid is characterized through relevant temperatures, flow, and electric fields with the ultimate goal of developing design rules for direct integrated cooling schemes. The development and electrical characterization of conformal dielectric surface coatings to provide further protection of the electronics is also undertaken. Results showed the ability for layers of Parylene C to maintain their insulating capacity when subject to E-fields as high as 33.5V/μm.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6345
Author(s):  
Lucia Feriancová ◽  
Iveta Kmentová ◽  
Michal Micjan ◽  
Milan Pavúk ◽  
Martin Weis ◽  
...  

A series of bithienyl-terminated surfactants with various alkyl chain lengths (from C8 to C13) and phosphono or chlorodimethylsilyl anchoring groups were synthesized by palladium-catalyzed hydrophosphonation, or platinum-catalyzed hydrosilylation as a key step. Surfactants were tested in pentacene or α-sexithiophene-based organic field-effect transistors (OFETs) for the modification of the dielectric surface. The studied surfactants increased the effective mobility of the α-sexithiophene-based device by up to one order of magnitude. The length of alkyl chain showed to be significant for the pentacene-based device, as the effective mobility only increased in the case of dielectric modification with bithienylundecylphosphonic acid. AFM allowed a better understanding of the morphology of semiconductors on bare SiO2 and surfaces treated with bithienylundecylphosphonic acid.


Author(s):  
Rafael Quintero-Torres ◽  
Jorge Luis Domínguez-Juárez ◽  
Mariia Shutova ◽  
Alexei V. Sokolov

We study the effect of oblique illumination on the functioning of a plasmonic nanoantenna for chiral light. The antenna is designed to receive a structured beam of light and produce a nanosized near-field distribution that possesses non-zero orbital angular momentum. The design consists of metal (gold) micro-rods laid on a dielectric surface and is compatible with well-developed nanofabrication techniques. Experimental arrangements often require such an antenna to operate in a tilted geometry, where input light is incident on the antenna at an oblique angle. We analyze the limitations that the angled illumination imposes and discuss approaches to mitigate these limitations. Through our numerical simulations, we find that tilt angles larger than 30 degrees require modifications to the antenna design. Our analysis guides current and future experimental configurations to pushing the limits of resolution and sensitivity.


Sign in / Sign up

Export Citation Format

Share Document