scholarly journals Power System Stabilizers and Control of Reactive Power Compensator in Multi-Machine by Particle Swarm Optimization Algorithm

2015 ◽  
Vol 8 (3) ◽  
pp. 254 ◽  
Author(s):  
H. Izadi ◽  
R. Effatnejad
2011 ◽  
Vol 460-461 ◽  
pp. 512-517
Author(s):  
De Jia Shi ◽  
Wei Jin Jiang ◽  
Xiao Ling Ding

A novel multi-agent particle swarm optimization algorithm (MAI'SO) is proposed for optimal reactive power dispatch and voltage control of power system. The method integrates multi-agent system (MAS) and particle swarm optimization algorithm (PSO). An agent in MAI.SO represents a particle to PSO and a candidate solution to the optimization problem. All agents live in a lattice-like environment, with each agent fixed on a lattice-point. In order to decrease fitness value, quickly, agents compete and cooperate with their neighbors. and they can also use knowledge. Making use of these agent interactions and evolution mechanism of I.SO. MAPSO realizes the purpose of' minimizing the value of' objective function. MAPSO applied for optimal reactive power is evaluated on an IEEE 30-bus power system. It is shown that the proposed approach converges to better solutions much faster than the earlier reported approaches


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hamza Yapıcı ◽  
Nurettin Çetinkaya

The power loss in electrical power systems is an important issue. Many techniques are used to reduce active power losses in a power system where the controlling of reactive power is one of the methods for decreasing the losses in any power system. In this paper, an improved particle swarm optimization algorithm using eagle strategy (ESPSO) is proposed for solving reactive power optimization problem to minimize the power losses. All simulations and numerical analysis have been performed on IEEE 30-bus power system, IEEE 118-bus power system, and a real power distribution subsystem. Moreover, the proposed method is tested on some benchmark functions. Results obtained in this study are compared with commonly used algorithms: particle swarm optimization (PSO) algorithm, genetic algorithm (GA), artificial bee colony (ABC) algorithm, firefly algorithm (FA), differential evolution (DE), and hybrid genetic algorithm with particle swarm optimization (hGAPSO). Results obtained in all simulations and analysis show that the proposed method is superior and more effective compared to the other methods.


2012 ◽  
Vol 512-515 ◽  
pp. 719-722
Author(s):  
Yan Ren ◽  
Yuan Zheng ◽  
Chong Li ◽  
Bing Zhou ◽  
Zhi Hao Mao

The hybrid wind/PV/pumped-storage power system was the hybrid system which combined hybrid wind/PV system and pumped-storage power station. System optimization was very important in the system design process. Particle swarm optimization algorithm was a stochastic global optimization algorithm with good convergence and high accuracy, so it was used to optimize the hybrid system in this paper. First, the system reliability model was established. Second, the particle swarm optimization algorithm was used to optimize the system model in Nanjing. Finally, The results were analyzed and discussed. The optimization results showed that the optimal design method of wind/PV/pumped-storage system based on particle swarm optimization could take into account both the local optimization and the global optimization, which has good convergence high precision. The optimal system was that LPSP (loss of power supply probability) was zero.


Sign in / Sign up

Export Citation Format

Share Document