scholarly journals Health Monitoring of a Hydraulic Brake System Using Nested Dichotomy Classifier – A Machine Learning approach

Author(s):  
R. Jegadeeshwaran ◽  
V. Sugumaran

Hydraulic brakes in automobiles play a vital role for the safety on the road; therefore vital components in the brake system should be monitored through condition monitoring techniques. Condition monitoring of brake components can be carried out by using the vibration characteristics. The vibration signals for the different fault conditions of the brake were acquired from the fabricated hydraulic brake test setup using a piezoelectric accelerometer and a data acquisition system. Condition monitoring of brakes was studied using machine learning approaches. Through a feature extraction technique, descriptive statistical features were extracted from the acquired vibration signals. Feature classification was carried out using nested dichotomy, data near balanced nested dichotomy and class balanced nested dichotomy classifiers. A Random forest tree algorithm was used as a base classifier for the nested dichotomy (ND) classifiers. The effectiveness of the suggested techniques was studied and compared. Amongst them, class balanced nested dichotomy (CBND) with the statistical features gives better accuracy of 98.91% for the problem concerned.

Author(s):  
Alamelu Manghai T. M ◽  
Jegadeeshwaran R

Vibration-based continuous monitoring system for fault diagnosis of automobile hydraulic brake system is presented in this study. This study uses a machine learning approach for the fault diagnosis study. A hydraulic brake system test rig was fabricated. The vibration signals were acquired from the brake system under different simulated fault conditions using a piezoelectric transducer. The histogram features were extracted from the acquired vibration signals. The feature selection process was carried out using a decision tree. The selected features were classified using fuzzy unordered rule induction algorithm ( FURIA ) and Repeated Incremental Pruning to Produce Error Reduction ( RIPPER ) algorithm. The classification results of both algorithms for fault diagnosis of a hydraulic brake system were presented. Compared to RIPPER and J48 decision tree, the FURIA performs better and produced 98.73 % as the classification accuracy.


2019 ◽  
Vol 25 (18) ◽  
pp. 2534-2550 ◽  
Author(s):  
T. M. Alamelu Manghai ◽  
R. Jegadeeshwaran

In this study, the application of wavelets has been investigated for diagnosing the faults on a hydraulic brake system of a light motor vehicle using the vibration signals acquired from a brake test setup through a piezoelectric type accelerometer. An efficient brake system should provide reliable and effective performance in order to ensure safety . If it is not properly monitored, it may lead to a serious catastrophic effect such as accidents, frequent breakdown, etc. Hence, the brake system needs to be monitored continuously. The condition of the brake components and the vibration signals are interrelated. If the failure starts progressing, the vibration magnitude will also progress. Analyzing the vibration signals under the various fault conditions is the key process in fault diagnosis. In recent decades wavelets have been focused on in many fault diagnosis studies as the wavelets decompose the complex information into simple form with high precision for further analysis. The wavelet features were extracted in order to retrieve the information from the vibration signals using discrete wavelet transform. From that discretized signal under each fault condition, the relevant features were extracted and feature selection was carried out. The selected features were then classified using a set of machine learning classifiers such as best first tree (pre-pruning, post-pruning, and unpruned), Hoeffding tree (HT), support vector machine, and neural network. The classification accuracies of all the algorithms were compared and discussed. Among the considered classifier model, the HT model produced a better classification accuracy as 99.45% for the hydraulic brake fault diagnosis.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 190 ◽  
Author(s):  
A. Joshuva ◽  
V. Sugumaran

This study is to identify whether the wind turbine blades are in good or faulty conditions. If faulty, then the objective to find which fault condition are the blades subjected to. The problem identification is carried out by machine learning approach using vibration signals through statistical features. In this study, a three bladed wind turbine was chosen and faults like blade cracks, hub-blade loose connection, blade bend, pitch angle twist and blade erosion were considered. Here, the study is carried out in three phases namely, feature extraction, feature selection and feature classification. In phase 1, the required statistical features are extracted from the vibration signals which obtained from the wind turbine through accelerometer. In phase 2, the most dominating or the relevant feature is selected from the extracted features using J48 decision tree algorithm. In phase 3, the selected features are classified using machine learning classifiers namely, K-star (KS), locally weighted learning (LWL), nearest neighbour (NN), k-nearest neighbours (kNN), instance based K-nearest using log and Gaussian weight kernels (IBKLG) and lazy Bayesian rules classifier (LBRC). The results were compared with respect to the classification accuracy and the computational time of the classifier.  


Sign in / Sign up

Export Citation Format

Share Document