Experimental investigation of R134a adsorption on silica gel for cooling system applications

Author(s):  
Muhsin Kilic ◽  
◽  
Ersan Gonul ◽  
2014 ◽  
Vol 63 (1) ◽  
pp. 419-427 ◽  
Author(s):  
Xiangjie Chen ◽  
Mark Worall ◽  
Siddig Omer ◽  
Yuehong Su ◽  
Saffa Riffat

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1281 ◽  
Author(s):  
Alok Dayanand ◽  
Muhsin Aykapadathu ◽  
Nazmi Sellami ◽  
Mehdi Nazarinia

This paper presents the experimental investigation of a novel cross-compound parabolic concentrator (CCPC). For the first time, a CCPC module was designed to simultaneously work as an electricity generator and collect the thermal energy present in the module which is generated due to the incident irradiation. This CCPC module consists of two regions: an absorber surface atop the rig and a reflective region below that to reflect the irradiation onto the photovoltaic (PV) cell, coupled together to form an absorptive/reflective CCPC (AR-CCPC) module. A major issue in the use of PV cells is the decrease in electrical conversion efficiency with the increase in cell temperature. This module employs an active cooling system to decrease the PV cell temperature, optimizing the electrical performance and absorbing the heat generated within the module. This system was found to have an overall efficiency of 63%, which comprises the summation of the electrical and thermal efficiency posed by the AR-CCPC module.


Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Sign in / Sign up

Export Citation Format

Share Document