scholarly journals Physical Basis of Quasi-optimal Seismoacoustic Pulse Generating for Geophysical Prospecting in Shallow Water and Transit Zones. Part 2. The Layout of Aqueous Seismic Source and the Results of Experiments

Author(s):  
Danil S. Kudinov ◽  
Oleg A. Maykov ◽  
Pavel V. Balandin

The article discusses theoretical aspects of seismic wave excitation of in the aquatic environ- ment, addresses the problems of instrumental implementation of a fundamentally new source of seismic vibrations that can work: in the water area, in tidal and coastal zones. The scientific substantiation of the developed seismic source (SS) design is given. The results of the seismic influence simulation of hydrodynamic resistance on the media, as well as the formation of the “added mass” are given. The results were obtained using the developed mathematical model of the motion of the radiating surface. Based on the experimental work, a comparative analysis of the energy efficiency of the developed seismic source model and the serial sample of the VEM-50 "Yenisei" water seismic source was made. Experimental results were obtained at the geophysical well of the test and training area

Author(s):  
Danil S. Kudinov ◽  
Oleg A. Maykov ◽  
Pavel V. Balandin

Despite the development of alternative energy, hydrocarbon raw materials is one of the most important energy resources in the world. The discovery of new deposits today is an urgent task. Long-term prospects for the development of seismic exploration are associated with the development of the continental shelf, in particular the Arctic. Also, a large raw material potential is expected from poorly studied territories located on the Arctic coast of the Russian Federation, reef zones of the Persian Gulf states, and in the transit and shallow waters (at a depth of up to 10 meters). The article discusses the theoretical aspects of the excitation of seismic waves in the water, addresses the problems of instrumental implementation of a new source of seismic vibrations that can work: in the water area, in tidal and coastal zones, i.e. produce continuous seismic profiling from the water area to the land. The scientific substantiation of the developed seismic source (SS) design is given


2005 ◽  
Vol 43 (2) ◽  
pp. 248-256 ◽  
Author(s):  
S.A. Ketcham ◽  
M.L. Moran ◽  
J. Lacombe ◽  
R.J. Greenfield ◽  
T.S. Anderson

2012 ◽  
Vol 28 (3) ◽  
pp. 1291-1296 ◽  
Author(s):  
Roger Musson

An objection sometimes made against treating the weights of logic tree branches as probabilities relates to the Kolmogorov axioms, but these are only an obstacle if one believes that logic tree branches represent a seismic source model or ground motion model as being “true.” Models are never true, but some models are better than others. It is argued here that a logic tree weight represents the probability that the model in question is better than the others considered. Only one branch can be the best one, and one branch must be the best one. It is also argued that there are situations in PSHA where uncertainty exists but the analyst lacks the means to express it. Therefore it is not necessarily the case that more information increases uncertainty; it may be that more information increases the possibility of expressing uncertainty that was previously unmanageable.


2018 ◽  
Vol 11 (15) ◽  
Author(s):  
I. El-Hussain ◽  
Y. Al-Shijbi ◽  
A. Deif ◽  
A. M. E. Mohamed ◽  
M. Ezzelarab

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qian Xu ◽  
Zhong-Qi Wang

To reveal the characteristics and laws of the seismic wavefield amplitude-frequency excited by explosive source, the method for computing the seismic wave spectrum excited by explosive was studied in this paper. The model for calculating the seismic wave spectrum excited by explosive source was acquired by taking the seismic source model of spherical cavity as the basis. The results of using this model show that the main frequency and the bandwidth of the seismic waves caused by the explosion are influenced by the initial detonation pressure, the adiabatic expansion of the explosive, and the geotechnical parameters, which increase with the reduction of initial detonation pressure and the increase of the adiabatic expansion. The main frequency and the bandwidth of the seismic waves formed by the detonation of the explosives in the silt clay increase by 23.2% and 13.6% compared to those exploded in the silt. The research shows that the theoretical model built up in this study can describe the characteristics of the seismic wave spectrum excited by explosive in a comparatively accurate way.


2012 ◽  
Vol 12 ◽  
pp. 4_308-4_318
Author(s):  
Shinichi AKIYAMA ◽  
Kaoru KAWAJI ◽  
Mariko KORENAGA ◽  
Satoru FUJIHARA ◽  
Takahiro TAMIYA

Sign in / Sign up

Export Citation Format

Share Document