scholarly journals Evaluation on the carbon pools of China’s forest ecosystems―current status, capacities and sinks and studies on the mechanisms

2016 ◽  
Vol 40 (4) ◽  
pp. 279-281 ◽  
Author(s):  
ZHOU Guo-Yi ◽  
2017 ◽  
Vol 18 (3-4) ◽  
pp. 37-50
Author(s):  
B. A. Baranovsky ◽  
I. A. Ivanko ◽  
A. V. Kotovych ◽  
L. A. Karmyzova ◽  
N. O. Roschina

Biodiversity is important for maintaining of forest ecosystems functioning and in their resistance to anthropo-climatic challenges. Assessment of species diversity and species ecomorphic analysis is the basis for determining their current status, rational use and protection. At the end of the nineteenth century, Belgard A. L. (1950) in his system of ectomorphs using terminology presented by Dekandol (1956) and Warming (1903), had proposed a «trophomorph» category that reflected species relation to soil richness. Analysis of trophomorphs reflects diversity of soil conditions in different biotopes within forest ecosystems. The article gives an analysis on vascular plant trophomorphs distribution in various forest biotopes of Oril river valley. Flora and vegetation surveys in forests of Oril river valley were carried out by A. L. Belgard and T. F. Kirichenko since the 30s of the 20th century. The latest data on forest vegetation state within the Oril river valley were given in the works of Y. Gamulja and V. Manyuk. Generalized bioecological analysis of flora Oril river valley was represented in the monograph of B. Baranovsky, V. Maniuk, I. Ivanko, L. Karmyzova «Flora analysis of the Oril National Park». As is known, edaphic conditions of plant habitats in a first place are determined by soil fertility depending on the plant nutrients availability. Soddy-forest soil on sandy terrace of Oril river valley has a relatively low content of humus and total nitrogen: 2 and 0.04 %. Under these conditions, pine phytocenoses were ocсurred that represented exclusively by artificial plantings. Soils in the depressed area of Oril river floodplain are much richer in humus and nitrogen content (10 and 0.37 %). Here, arboreal and shrubby vegetation is represented by communities with common oak. On the second terrace of Oril river valley, forest vegetation is represented by artificial pine forests. Microcenoses with black locust, amorpha and willow occurred on elevated areas of sandy terrace (arena). In the depressed area of the arena, microcenoses with aspen and birch, aspen, Tatarian maple, amorpha, black locust were occurred additionally to pine communities. In the Oril floodplain, native arboreal and shrubby vegetation is represented mainly by communities with common oak. In depressed areas of the floodplain, microcenoses with white poplar, black poplar, aspen, Tatarian maple, amorpha, willow (Salix alba, S. fragilis), osiery (Salix cinerea, S. triandra),  and alder are fragmentarily occurred. In conditions of elevated areas of the floodplain, 196 vascular plants species were found, and 105 species in depressed areas. On the second terrace, 38 plant species grow on the elevated areas, and 54 species on the depressed ones. Flora includes 45 adventive plant species. In depressed floodplain areas, oligotrophs are represented by 7 species, mesotrophs by 126 species, megatrophs by 50 species, and in elevated areas: 7, 126 and 25 species, respectively. In depressed areas of arena oligotrophs are represented by 4 species, mesotrophs by 29 species, and megatrophs by 11, elevated areas: 7 and 21 species respectively, and megatrophs were absent.


2010 ◽  
pp. 226-241 ◽  
Author(s):  
Robert S. Steneck ◽  
Rodrigo H. Bustamante ◽  
Paul K. Dayton ◽  
Geoffrey P. Jones ◽  
Alistair J. Hobday

2021 ◽  
Author(s):  
Aiuob moradi ◽  
Nagi Shabanian

Abstract Background Rising atmospheric carbon dioxide has led to the global consequences of climate change. Biological carbon sequestration through vegetation and soils is one of the cost-effective ways to reduce this gas. Forests ecosystems are the most important carbon pools among terrestrial ecosystems and play a sustainable and long-term role in reducing climate change. Among forest ecosystems, sacred groves are less-disturbed and they can be a pattern of successful forest management for carbon sequestration and climate change reduction. In the present study, for the first time, the amount of carbon content in sacred grove and silvopastoral lands were investigated to determine the capacity of Zagros oak forests in carbon sequestration and climate change reduction. The aim of this study was to estimate the amount of carbon reserves in mentioned land-uses in order to obtain a systematic attitude towards management of these different land-use types and attain a suitable solution to counter the climate change crisis and ultimately sustainable environmental development. Results The results showed that each of the studied variables in the two studied land use is significantly different from each other. The mean of each of these biomass or carbon pools in silvopastoral is significantly lower than sacred groves. The results indicate that the common utilizations in the forests of the study area cause a significant reduction (P ≤ 0.01) in the forest biomass value and respective carbon content. Sacred grove currently absorbs 826.96 tons of carbon dioxide per hectare more than silvopastoral lands and this is a sign of high degradation in the forests of the study area. Conclusions According to the results obtained in this study, forest ecosystems that are protected against human intervention play a significant role in long-term carbon storage. Any interference with the natural conditions of the ecosystem has a significant negative impact on carbon reserves. Therefore, by selecting appropriate measures, local communities should be empowered to reduce their dependence on low incomes obtained from deforestation and conversion.


Ecoscience ◽  
2014 ◽  
Vol 21 (3-4) ◽  
pp. 265-277 ◽  
Author(s):  
Guy R. Larocque ◽  
David Paré ◽  
Robert Boutin ◽  
Lamine Sarr ◽  
Valérie Lacerte ◽  
...  

Science ◽  
1994 ◽  
Vol 263 (5144) ◽  
pp. 185-190 ◽  
Author(s):  
R. K. Dixon ◽  
A. M. Solomon ◽  
S. Brown ◽  
R. A. Houghton ◽  
M. C. Trexier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document