scholarly journals Effect of burner angle on the heat transfer of a frit furnace

Author(s):  
Jorge Luis Rentería Peláez ◽  
Luis Fernando Cardona Sepulveda ◽  
Bernardo Argemiro Herrera Múnera

In this work, a numerical analysis was performed about the effect of a flat-flame burner incidence degree on the heat transfer of an industrial scale frit melting furnace, which uses a flat-flame natural gas oxy-combustion burner. The thermal performance of the furnace was evaluated by predicting the temperature distributions, the recirculation of the combustion gases, and the heat flow to the load, using three different geometrical configurations, differing in the inclination of the burner at 0°, 3.5°, 7° with respect to the longitudinal axis. The simulations were carried out using the ANSYS® Fluent software. The Steady Laminar Flamelet (SFM) model, the k-epsilon realizable model, and the discrete ordinates model were used to model combustion, turbulence, and radiation, respectively. The weighted model of the sum of gray gases (WSGGM) was used for the coefficient of absorption of the combustion species. It was observed that the furnace temperature estimated with the simulations is similar to that found in the actual process. Additionally, the simulations showed that for the angle of 7°, the flame collides with the frit, which could generate deposition of frit particles in the internal walls of the furnace; this would affect the emissivity of the refractory material. The 3.5degree angle showed a better distribution of heat flow to the frit and recirculation rate compared to the burner at 0° and 7°.

Author(s):  
Ludwig Haber ◽  
David Losh ◽  
Uri Vandsburger ◽  
William Baumann ◽  
William Saunders

2010 ◽  
Vol 49 (4) ◽  
pp. 783-795 ◽  
Author(s):  
Takayuki Fuyuto ◽  
Helmut Kronemayer ◽  
Burkhard Lewerich ◽  
Jan Brübach ◽  
Taketoshi Fujikawa ◽  
...  

1988 ◽  
Vol 45 (3) ◽  
pp. 121-123
Author(s):  
V. I. Kirilenko ◽  
I. S. Il'yashenko ◽  
A. I. Es'kov ◽  
I. B. Smulyanskii ◽  
V. I. Basov

Author(s):  
Will Schreiber ◽  
John Kuo

Abstract The current paper describes a computer model designed to analyze the moisture transport in the unmelted, porous soil neighboring a convecting melt. The time-dependent fluid and heat flow in the soil melt is simulated implicitly using the SIMPLE method generalized to predict viscous fluid motion and heat transfer on boundary-fitted, non-orthogonal coordinates which adapt with time. TOUGH2, a general-purpose computer code for multiphase fluid and heat flow developed by K. Pruess at Lawrence Berkekey Laboratory, has been modified for use on time-adaptive, boundary-fitted coordinates to predict heat transfer, moisture and air transport, and pressure distribution in the porous, unmelted soil. The soil melt model is coupled with the modified TOUGH2 model via an interface (moving boundary) whose shape is determined implicitly with the progression of time. The computer model’s utility is demonstrated in the present study with a special two-dimensional study. A soil initially at 20°C and partially-saturated with either a 0.2 or 0.5 relative liquid saturation is contained in a box two meters wide by ten meters high with impermeable bottom and sides. The upper surface of the soil is exposed to a 20°C atmosphere to which vapor and air can escape. Computation begins when the soil, which melts at 1700°C, is heated from one side (maintained at constant temperatures ranging from 1700°C to 4000°C). Heat from the hot wall causes the melt to circulate in such a way that the melt interface grows more rapidly at the top of the box than at the bottom. As the upper portion of the melt approaches the impermeable wall it creates a bottle neck for moisture release from the soil’s lower regions. The pressure history of the trapped moisture is examined as a means for predicting the potential for moisture penetration into the melt. The melt’s interface movement and moisture transport in the unmelted, porous soil are also examined.


Sign in / Sign up

Export Citation Format

Share Document