A Computational Study of the Interaction of Melting Soil With Moisture Transport in the Native Soil

Author(s):  
Will Schreiber ◽  
John Kuo

Abstract The current paper describes a computer model designed to analyze the moisture transport in the unmelted, porous soil neighboring a convecting melt. The time-dependent fluid and heat flow in the soil melt is simulated implicitly using the SIMPLE method generalized to predict viscous fluid motion and heat transfer on boundary-fitted, non-orthogonal coordinates which adapt with time. TOUGH2, a general-purpose computer code for multiphase fluid and heat flow developed by K. Pruess at Lawrence Berkekey Laboratory, has been modified for use on time-adaptive, boundary-fitted coordinates to predict heat transfer, moisture and air transport, and pressure distribution in the porous, unmelted soil. The soil melt model is coupled with the modified TOUGH2 model via an interface (moving boundary) whose shape is determined implicitly with the progression of time. The computer model’s utility is demonstrated in the present study with a special two-dimensional study. A soil initially at 20°C and partially-saturated with either a 0.2 or 0.5 relative liquid saturation is contained in a box two meters wide by ten meters high with impermeable bottom and sides. The upper surface of the soil is exposed to a 20°C atmosphere to which vapor and air can escape. Computation begins when the soil, which melts at 1700°C, is heated from one side (maintained at constant temperatures ranging from 1700°C to 4000°C). Heat from the hot wall causes the melt to circulate in such a way that the melt interface grows more rapidly at the top of the box than at the bottom. As the upper portion of the melt approaches the impermeable wall it creates a bottle neck for moisture release from the soil’s lower regions. The pressure history of the trapped moisture is examined as a means for predicting the potential for moisture penetration into the melt. The melt’s interface movement and moisture transport in the unmelted, porous soil are also examined.

Author(s):  
Mehmet Arik ◽  
Yogen Utturkar

Seamless advancements in electronics industry resulted in high performance computing. These innovations lead to smaller electronics systems with higher heat fluxes than ever. However, shrinking nature of real estate for thermal management has created a need for more effective and compact cooling solutions. Novel cooling techniques have been of interest to solve the demand. One such technology that functions with the principle of creating vortex rings is called synthetic jets. The jets are meso-scale devices operating as zero-net-mass-flux principle by ingesting and ejection of high velocity working fluid from a single opening. These devices produce periodic jet streams, which may have peak velocities over 20 times greater than conventional, comparable size fan velocities. Those jets enhance heat transfer in both natural and forced convection significantly over bare and extended surfaces. Recognizing the heat transfer physics over surfaces require a fundamental understanding of the flow physics caused by micro fluid motion. A comprehensive computational and experimental study has been performed to understand the flow physics of a synthetic jet. Computational study has been performed via Fluent commercial software, while the experimental study has been performed by using Laser Doppler Anemometry. Since synthetic jets are typical sine-wave excited between 20 and 60 V range, they have an orifice peak velocity of over 60 m/s, resulting in a Reynolds number of 2000. CFD predictions on the vortex dipole location fall within 10% of the experimental measurement uncertainty band.


Author(s):  
Dileep V. Nair

Abstract This work presents a simple method to improve natural convection heat transfer performance of horizontal-base straight-fin heat sink by adding partial shroud plates on top of the heat sink at both ends. Experiments are conducted in conjunction with a detailed three-dimensional (3D) computational study. The numerical model is validated using experimental results. With partial shrouding, the modification and effective utilization of airflow surrounding the heat sink leads to significant heat transfer enhancement. The installation of shroud plates effectively improves the mass flowrate of air admitted into the fin channel. Further, the airflow drawn above the heat sink dissipates heat from the upper surface of the shroud plate. There is also a significant heat dissipation from the lower surface of the shroud plate which is exposed to cold air drawn from the side-end of the heat sink. The heat transfer from the existing optimal conventional heat sink is improved by 17% with the introduction of shroud plates. An optimal width of the shroud plate is identified to exist for the maximum heat transfer. The percentage enhancement in heat transfer achieved by partial shrouding increases with a decrease in the fin height and with an increase in the fin spacing. The proposed compact heat sink design would be of application in enhancing passive heat dissipation from light-emitting diode (LED) lights and other electronic devices, especially when size constraints exist.


Author(s):  
Yu. P. Morozov

Based on the solution of the problem of non-stationary heat transfer during fluid motion in underground permeable layers, dependence was obtained to determine the operating time of the geothermal circulation system in the regime of constant and falling temperatures. It has been established that for a thickness of the layer H <4 m, the influence of heat influxes at = 0.99 and = 0.5 is practically the same, but for a thickness of the layer H> 5 m, the influence of heat inflows depends significantly on temperature. At a thickness of the permeable formation H> 20 m, the heat transfer at = 0.99 has virtually no effect on the thermal processes in the permeable formation, but at = 0.5 the heat influx, depending on the speed of movement, can be from 50 to 90%. Only at H> 50 m, the effect of heat influx significantly decreases and amounts, depending on the filtration rate, from 50 to 10%. The thermal effect of the rock mass with its thickness of more than 10 m, the distance between the discharge circuit and operation, as well as the speed of the coolant have almost no effect on the determination of the operating time of the GCS in constant temperature mode. During operation of the GCS at a dimensionless coolant temperature = 0.5, the velocity of the coolant is significant. With an increase in the speed of the coolant in two times, the error changes by 1.5 times.


Sign in / Sign up

Export Citation Format

Share Document