high temperature combustion
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 27)

H-INDEX

31
(FIVE YEARS 1)

Author(s):  
F. A. Gubarev ◽  
A. V. Mostovshchikov ◽  
A. P. Ilyin ◽  
L. Li ◽  
A. I. Fedorov ◽  
...  

2021 ◽  
Vol 2039 (1) ◽  
pp. 012032
Author(s):  
A I Schastlivtsev ◽  
V I Borzenko

Abstract The main types and designs of hydrogen combustion units (HCU), including hydrogen-oxygen steam generators, superheaters and air heaters of various power levels, are considered. The main problems arising in the development, creation and testing of such installations are determined, including the problems of cooling the most heat-stressed units, mixing of the main components of the fuel and oxidizer, mixing of high-temperature combustion products and ballasting components, problems associated with the completeness of hydrogen combustion and ensuring safety during operation.


2021 ◽  
Vol 13 (6) ◽  
pp. 1145
Author(s):  
Anastasia N. Drozdova ◽  
Andrey A. Nedospasov ◽  
Nikolay V. Lobus ◽  
Svetlana V. Patsaeva ◽  
Sergey A. Shchuka

Notable changes in the Arctic ecosystem driven by increased atmospheric temperature and ice cover reduction were observed in the last decades. Ongoing environmental shifts affect freshwater discharge to the Arctic Ocean, and alter Arctic land-ocean fluxes. The monitoring of DOC distribution and CDOM optical properties is of great interest both from the point of view of validation of remote sensing models, and for studying organic carbon transformation and dynamics. In this study we report the DOC concentrations and CDOM optical characteristics in the mixing zones of the Ob, Yenisei, Khatanga, Lena, Kolyma, and Indigirka rivers. Water sampling was performed in August–October 2015 and 2017. The DOC was determined by high-temperature combustion, and absorption coefficients and spectroscopic indices were calculated using the seawater absorbance obtained with spectrophotometric measurements. Kara and Laptev mixing zones were characterized by conservative DOC behavior, while the East Siberian sea waters showed nonconservative DOC distribution. Dominant DOM sources are discussed. The absorption coefficient aCDOM (350) in the East Siberian Sea was two-fold lower compared to Kara and Laptev seawaters. For the first time we report the DOC content in the Khatanga River of 802.6 µM based on the DOC in the Khatanga estuary.


Author(s):  
Liu Jiping ◽  
Fang Zhuqing ◽  
Wang Yinjie ◽  
Han Jia

Since the discovery of glare illuminators, considerable efforts have been devoted to achieving a breakthrough of high light intensity on the order of magnitude. In this paper, we prepared strong flash blinding agents for the first time by using aluminum powder, oxidant, and adhesive as the main materials, and tris-(8-hydroxyquinolinato) aluminum (Al2q3), triazoindolizine, or nano zinc oxide, etc. as electronic output brightener after mixing and granulation according to the developed formulation. It was discovered that the luminescence intensity was related to the thermal effect of the substance while the brightener only served as an auxiliary brightening effect to achieve energy non-destructive conversion. With the same formula, the luminescence intensities of glaze agents with ADN and potassium perchlorate as oxidants were slightly higher than that of ammonium perchlorate oxidant; the brightening effect of nano-zinc oxide was slightly higher than those of tris-(8-hydroxyquinolinato) aluminum (Al2q3) and triazoindolizine. The luminescence intensity of the substance with a high thermal effect value was high, but the luminescence time was slightly short. Under identical conditions, the luminescence effect of nano-aluminum powder was obviously better than that of micro-aluminum powder with the highest luminescence intensity of 3.9 × 1010 ~ 1.9 × 1011 cd and the luminescence time of 39 - 48 ms. The effects of shell material and structure and the effect of heat-induced mode on the luminescence intensity were also investigated. The luminescence intensity of the glare agent with a high shell strength was high, but the luminescence time was slightly short. Moreover, the energy level of the brightener is excited under the induction of high temperatures, which leads to a blue shift to promote the chemical reaction of the material in a favorable direction. Finally, the optical radiation of the thermally induced high-temperature combustion system was analyzed from the aspects of thermal effect, combustion temperature, and chemiluminescence effect. A way to improve the optical radiation intensity of a high-temperature combustion system was proposed.


Fuel ◽  
2021 ◽  
Vol 286 ◽  
pp. 119379
Author(s):  
Xin Li ◽  
Zhimin Lu ◽  
Jinzheng Chen ◽  
Xiaoxuan Chen ◽  
Yuan Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document