scholarly journals Analysis and comparison of metal-doped on Graphene-Genistein using QM/MM calculations

Author(s):  
Afshar Alihosseini ◽  
Marziyeh Choupani ◽  
Majid Monajjemi ◽  
Hossein Sakhaeinia

Genistein (5,7,4′-trihydroxyisoflavone) is an isoflavone abundantly found in soy and other legumes and acts as a selective estrogen receptor modulator (SERM). When testing for similar abilities among other flavonoids, it has been found to be a strong topoisomerase inhibitor. Similar to some high-dose chemotherapy drugs, it was strongly toxic to normal cells. In this study, the adsorption of genistein on the surface of exclusive graphene and Ni, Ti, Cr, and Se-doped graphene was theoretically evaluated by means of density functional theory calculation. Initially, we varied the position of genistein from the surface of pristine and decorated graphene by changing the distances between (1-5 Å) and gained the Ead and Egap for each situation. Our calculation indicated that adsorption energies (Ead) of pristine genistein to graphene with Ni decorated graphene, Ti-     decorated graphene, and Cr-decorated graphene and Se-decorated graphene are: 954.984, 318.168, 797.480, 946.725, 958.154 kcal/mole, respectively, and the calculated values of adsorption energy in the equilibrium distance (de=3.918OA.) of genistein to Ni-decorated graphene reveal that apparently genistein- Ni-decorated graphene as the most energetically favorable position was correctly selected in comparison with other atom     -decorated graphene. In consequence, we explain the density of states (Doss) and frontier molecular orbitals HOMO and LUMO for Ni-decorated graphene and complexes with genistein; therefore, data confirmed that a positive charge of Ni-decorated graphene for nucleophile molecules could be achieved. 

2021 ◽  
Vol 9 (12) ◽  
pp. 4316-4321
Author(s):  
L.-B. Meng ◽  
S. Ni ◽  
Z. M. Zhang ◽  
S. K. He ◽  
W. M. Zhou

Density functional theory calculation predicts a novel ordered boron phosphorus codoped graphene realizing a widely tunable Dirac-cone gap.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaowen Chen ◽  
Mi Peng ◽  
Xiangbin Cai ◽  
Yunlei Chen ◽  
Zhimin Jia ◽  
...  

AbstractMetal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure–performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction.


Sign in / Sign up

Export Citation Format

Share Document