scholarly journals A Comparative Flood Frequency Analysis of High-Flow between Annual Maximum and Partial Duration Series at Sungai Langat Basin

2021 ◽  
Vol 50 (7) ◽  
pp. 1843-1856
Author(s):  
Firdaus Mohamad Hamzah ◽  
Hazrina Tajudin ◽  
Othman Jaafar

Flood frequency analysis should consider small and frequent floods. Despite the complexities in partial duration series implementation, it can give a better flood estimation in a way that it does not exclude any significant high flow events, even if it is not the highest event of the year. This study employs the streamflow data recorded at Kajang station, Sungai Langat, Malaysia over a 36-year period spanning from 1978 to 2013. The paper attempts to conduct flood frequency analysis using two approaches, annual maximum and partial duration series. The optimal threshold value is selected to be 48.7 m3/s, where the dispersion index stabilizes at around 1, DI = 1 . The results have shown that generalized extreme value (GEV) distribution describes the annual maximum data while the lognormal (LN3) and generalized Pareto (GPA) distribution is chosen as the best fit distribution at Kajang station for a partial duration series. There is a slight difference between estimated streamflow magnitude when using GPA and LN3 for selected return periods, while a considerable difference was observed when using annual maximum at a higher return period. As a conclusion, PDS gives more relevant magnitude estimation rather than AMS. Flood frequency plays an important role in understanding the nature and magnitude of high flow, which in turn can assist relevant agencies in the design of hydrological structures and reduce flood impacts.

2014 ◽  
Vol 14 (5) ◽  
pp. 1283-1298 ◽  
Author(s):  
D. Lawrence ◽  
E. Paquet ◽  
J. Gailhard ◽  
A. K. Fleig

Abstract. Simulation methods for extreme flood estimation represent an important complement to statistical flood frequency analysis because a spectrum of catchment conditions potentially leading to extreme flows can be assessed. In this paper, stochastic, semi-continuous simulation is used to estimate extreme floods in three catchments located in Norway, all of which are characterised by flood regimes in which snowmelt often has a significant role. The simulations are based on SCHADEX, which couples a precipitation probabilistic model with a hydrological simulation such that an exhaustive set of catchment conditions and responses is simulated. The precipitation probabilistic model is conditioned by regional weather patterns, and a bottom–up classification procedure was used to define a set of weather patterns producing extreme precipitation in Norway. SCHADEX estimates for the 1000-year (Q1000) discharge are compared with those of several standard methods, including event-based and long-term simulations which use a single extreme precipitation sequence as input to a hydrological model, statistical flood frequency analysis based on the annual maximum series, and the GRADEX method. The comparison suggests that the combination of a precipitation probabilistic model with a long-term simulation of catchment conditions, including snowmelt, produces estimates for given return periods which are more in line with those based on statistical flood frequency analysis, as compared with the standard simulation methods, in two of the catchments. In the third case, the SCHADEX method gives higher estimates than statistical flood frequency analysis and further suggests that the seasonality of the most likely Q1000 events differs from that of the annual maximum flows. The semi-continuous stochastic simulation method highlights the importance of considering the joint probability of extreme precipitation, snowmelt rates and catchment saturation states when assigning return periods to floods estimated by precipitation-runoff methods. The SCHADEX methodology, as applied here, is dependent on observed discharge data for calibration of a hydrological model, and further study to extend its application to ungauged catchments would significantly enhance its versatility.


2021 ◽  
Author(s):  
Xiao Pan ◽  
Ataur Rahman

Abstract Flood frequency analysis (FFA) enables fitting of distribution functions to observed flow data for estimation of flood quantiles. Two main approaches, Annual Maximum (AM) and peaks-over-threshold (POT) are adopted for FFA. POT approach is under-employed due to its complexity and uncertainty associated with the threshold selection and independence criteria for selecting peak flows. This study evaluates the POT and AM approaches using data from 188 gauged stations in south-east Australia. POT approach adopted in this study applies a different average numbers of events per year fitted with Generalised Pareto (GP) distribution with an automated threshold detection method. The POT model extends its parametric approach to Maximum Likelihood Estimator (MLE) and Point Moment Weighted Unbiased (PMWU) method. Generalised Extreme Value (GEV) distribution using L-moment estimator is used for AM approach. It has been found that there is a large difference in design flood estimates between the AM and POT approaches for smaller average recurrence intervals (ARI), with a median difference of 25% for 1.01 year ARI and 5% for 50 and 100 years ARIs.


2019 ◽  
Vol 79 ◽  
pp. 03022
Author(s):  
Shangwen Jiang ◽  
Ling Kang

Under changing environment, the streamflow series in the Yangtze River have undergone great changes and it has raised widespread concerns. In this study, the annual maximum flow (AMF) series at the Yichang station were used for flood frequency analysis, in which a time varying model was constructed to account for non-stationarity. The generalized extreme value (GEV) distribution was adopted to fit the AMF series, and the Generalized Additive Models for Location, Scale and Shape (GAMLSS) framework was applied for parameter estimation. The non-stationary return period and risk of failure were calculated and compared for flood risk assessment between stationary and non-stationary models. The results demonstrated that the flow regime at the Yichang station has changed over time and a decreasing trend was detected in the AMF series. The design flood peak given a return period decreased in the non-stationary model, and the risk of failure is also smaller given a design life, which indicated a safer flood condition in the future compared with the stationary model. The conclusions in this study may contribute to long-term decision making in the Yangtze River basin under non-stationary conditions.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 709 ◽  
Author(s):  
Munir Snu ◽  
Sidek L.M ◽  
Haron Sh ◽  
Noh Ns.M ◽  
Basri H ◽  
...  

The recent flood event occurred in 2014 had caused disaster in Perak and Sungai Perak is the main river of Perak which is a major natural drainage system within the state. The aim of this paper is to determine the expected discharge to return period downstream for Sg. Perak River Basin in Perak by using annual maximum flow data. Flood frequency analysis is a technique to assume the flow values corresponding to specific return periods or probabilities along the river at a different site. The method involves the observed annual maximum flow discharge data to calculate statistical information such as standard deviations, mean, sum, skewness and recurrence intervals. The flood frequency analysis for Sg. Perak River Basin was used Log Pearson Type-III probability distribution method. The annual maximum peak flow series data varying over period 1961 to 2016. The probability distribution function was applied to return periods (T) where T values are 2years, 5years, 10years, 25years, 50years, and 100years generally used in flood forecasting. Flood frequency curves are plotted after the choosing the best fits probability distribution for annual peak maximum data. The results for flood frequency analysis shows that Sg. Perak at Jambatan Iskandar much higher inflow discharge  which is 3714.45m3/s at the 100years return period compare to Sg. Plus at Kg Lintang and Sg. Kinta at Weir G. With this, the 100years peak flow at Sg Perak river mouth is estimated to be in the range of 4,000 m3/s. Overall, the analysis relates the expected flow discharge to return period for all tributaries of Sg. Perak River Basin.


Sign in / Sign up

Export Citation Format

Share Document