Geomechanical monitoring and stress–strain analysis of rock mass – lining system during sinking of super-deep shaft SKS-1 in Skalisty mine

2020 ◽  
pp. 23-27
Author(s):  
V. P. Marysyuk ◽  
◽  
T. S. Mushtekenov ◽  
A. N. Pankratenko ◽  
O. S. Kaledin ◽  
...  
2020 ◽  
pp. 35-39
Author(s):  
I. E. Semenova ◽  
◽  
S. V. Dmitriev ◽  
A. A. Shestov ◽  
◽  
...  

A rock mass is composed of blocks, and the interfaces of various scale blocks represent different kind discontinuities. Such structure is also associated with nonuniformity of stresses. The stress–strain behavior of rock mass in the Khibiny apatite–nepheline massif in the course of mining is governed by natural geological and induced faulting. This study considers modification of the finite element method in the stress–strain analysis of rocks with regard to deformation at interfaces of different-modulus media. After 2D tests of interface elements, an optimal type of the interface element was selected for the 3D modification implementation. The latter can improve reliability of geomechanical forecasts in mineral mining in complicated geological and geodynamic conditions. From the test data on modification of interface elements, the optimal interface element is assumed to be the six-node interface element proposed by V. Kalyakin and Jianchao Li. The six-node interface element is introduced in the model of a tunnel with simulation of an unloading line at the boundary. The adequate results on adjacent rock deformation are obtained. The 3D interface element modification reveals its peculiarities and limitations as regards introduction in finite element models of mineral deposits and enclosing rock mass. The ways of solving these problems are proposed.


2018 ◽  
pp. 15-17 ◽  
Author(s):  
K. S. Kolikov ◽  
◽  
I. E. Mazina ◽  
A. I. Manevich ◽  
◽  
...  

2021 ◽  
Vol 2 (4) ◽  
pp. 158-163
Author(s):  
Anvar I. Chanyshev ◽  
Igizar M. Abdulin

The authors solve the problem on the stresses and strains of rock mass around a cylindrical excavation with the preset vectors of the Cauchy stresses and displacements at the boundary. It is assumed that the surrounding rock mass is elastic. Along the cylindrical excavation (free of stresses), displacements are measured as functions of two surface coordinates (polar angle and length along the symmetry axis of the excavation). These measurements are used to determine all components of tensors of stresses and strains at the boundary, and all coordinates of rotation vector. It is shown how this information can be used in the stress-strain analysis of rock mass farther from the excavation.


2017 ◽  
Vol 191 ◽  
pp. 1048-1055 ◽  
Author(s):  
L.A. Nazarova ◽  
V.N. Zakharov ◽  
V.L. Shkuratnik ◽  
L.A. Nazarov ◽  
M.I. Protasov ◽  
...  

TAPPI Journal ◽  
2012 ◽  
Vol 11 (1) ◽  
pp. 61-66 ◽  
Author(s):  
DOEUNG D. CHOI ◽  
SERGIY A. LAVRYKOV ◽  
BANDARU V. RAMARAO

Delamination between layers occurs during the creasing and subsequent folding of paperboard. Delamination is necessary to provide some stiffness properties, but excessive or uncontrolled delamination can weaken the fold, and therefore needs to be controlled. An understanding of the mechanics of delamination is predicated upon the availability of reliable and properly calibrated simulation tools to predict experimental observations. This paper describes a finite element simulation of paper mechanics applied to the scoring and folding of multi-ply carton board. Our goal was to provide an understanding of the mechanics of these operations and the proper models of elastic and plastic behavior of the material that enable us to simulate the deformation and delamination behavior. Our material model accounted for plasticity and sheet anisotropy in the in-plane and z-direction (ZD) dimensions. We used different ZD stress-strain curves during loading and unloading. Material parameters for in-plane deformation were obtained by fitting uniaxial stress-strain data to Ramberg-Osgood plasticity models and the ZD deformation was modeled using a modified power law. Two-dimensional strain fields resulting from loading board typical of a scoring operation were calculated. The strain field was symmetric in the initial stages, but increasing deformation led to asymmetry and heterogeneity. These regions were precursors to delamination and failure. Delamination of the layers occurred in regions of significant shear strain and resulted primarily from the development of large plastic strains. The model predictions were confirmed by experimental observation of the local strain fields using visual microscopy and linear image strain analysis. The finite element model predicted sheet delamination matching the patterns and effects that were observed in experiments.


2015 ◽  
Vol 9 (6) ◽  
pp. 583
Author(s):  
Dario German Buitrago ◽  
Luis Carlos Ruíz ◽  
Olga Lucia Ramos

Author(s):  
Van Min Nguyen ◽  
V. A. Eremenko ◽  
M. A. Sukhorukova ◽  
S. S. Shermatova

The article presents the studies into the secondary stress field formed in surrounding rock mass around underground excavations of different cross-sections and the variants of principal stresses at a mining depth greater than 1 km. The stress-strain analysis of surrounding rock mass around development headings was performed in Map3D environment. The obtained results of the quantitative analysis are currently used in adjustment of the model over the whole period of heading and support of operating mine openings. The estimates of the assumed parameters of excavations, as well as the calculations of micro-strains in surrounding rock mass by three scenarios are given. During heading in the test area in granite, dense fracturing and formation of tensile strain zone proceeds from the boundary of e ≥ 350me and is used to determine rough distances from the roof ( H roof) and sidewalls ( H side) of an underground excavation to the 3 boundary e = 350me (probable rock fracture zone). The modeling has determined the structure of secondary stress and strain fields in the conditions of heading operations at great depths.


Sign in / Sign up

Export Citation Format

Share Document