scholarly journals Sub-lethal Effects of Chlorpyrifos on Glutathione S-Transferase Activity and Total Protein Contents of Fish, Labeo rohita

Author(s):  
Qaisra Siddique
Author(s):  
Qaisra Siddique ◽  
Sajid Abdullah ◽  
Huma Naz ◽  
Khalid Abbas ◽  
Laiba Shafique

1976 ◽  
Vol 160 (2) ◽  
pp. 223-229 ◽  
Author(s):  
B F Hales ◽  
A H Neims

The glutathione S-transferases are a group of proteins with overlapping substrate specificities and ligand-binding capacities. This report examines certain approaches to the measurement of transferase B (ligandin) in the rat liver. The ratio of catalytic activities toward 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene gives some indication of the relative proportions of the various transferases present in 100 000 g supernatants. The fraction of catalytic activity towards 1-chloro-2,4-dinitrobenzene, due to transferase B, was best measured by immunoprecipitation with anti-(transferase B). Male rat liver exhibited three times more activity towards 1,2-dichloro-4-nitrobenzene than female tissue; however, the activities towards 1-chloro-2,4-dinitrobenzene were almost identical. By assuming a specific activity of 11 mumol/min per mg, immunoprecipitable transferase B comprised 4.5 +/- 0.2% of total protein in the 100 000 g supernatant of female rat liver, and 70% of the transferase activity towards 1-chloro-2,4-dinitrobenzene. The amount of transferase B in the 100 000 g supernatant from male rat liver is significantly lower with respect to both fraction of total protein (3.3 +/- 0.2%) and overall transferase activity towards 1-chloro-2,4-dinitrobenzene (48%). Hypophysectomy eliminated this sex difference in the hepatic concentration of glutathione S-transferase B.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Maria Latif ◽  
Mehwish Faheem ◽  
Asmatullah ◽  
Seyed Hossein Hoseinifar ◽  
Hien Van Doan

This feeding trial was conducted to investigate the effects of dietary black seed (Nigella sativa) supplementation on the growth performance, muscles proximate composition, antioxidant and histo-biochemical parameters of rohu (Labeo rohita). Fingerlings (8.503 ± 0.009 g) were fed on 0.0%, 1% and 2.5% black seed supplemented diets for 28 days. Fish sampling was done on the 7th, 14th, 21st and 28th day of experiment. The results of the present study indicated that black seed supplementation significantly increased growth performance and muscles protein contents of rohu over un-supplemented ones. Lipid peroxidation levels significantly decreased in all the studied tissues (liver, gills, kidney and brain) of black seed fed rohu, whereas the antioxidant enzymes (catalase, glutathione-S-transferase, glutathione peroxidase and reduced glutathione) activities were increased in all the studied tissues of black seed supplemented rohu at each sampling day. The hepatic-nephric marker enzymes levels were decreased for black seed fed rohu. The present study showed that tested black seed levels are safe for rohu. Black seed is cheaply available in local markets of Pakistan; therefore, based on the results of the present study, it is suggested that black seed has potential to be used as natural growth promoter and antioxidant in the diet of rohu.


1991 ◽  
Vol 46 (9-10) ◽  
pp. 850-855 ◽  
Author(s):  
John V. Dean ◽  
John W. Gronwald ◽  
Michael P. Anderson

Abstract Fast protein liquid chromatography (anion exchange) was used to separate glutathione S-transferase isozymes in nontreated etiolated maize shoots and those treated with the herbi­cide safener CGA -1542814-(dichloroacetyl)-3,4-dihydro-3-methyl-2 H-1 ,4-benzoxazine. Non­treated shoots contained isozymes active with the following substrates: trans-cinnamic acid (1 isozyme), atrazine (3 isozymes), 1-chloro-2,4-dinitrobenzene (1 isozyme), metolachlor (2 isozymes) and the sulfoxide derivative of S-ethyl dipropylcarbamothioate (2 isozymes). Pre­treatment of shoots with the safener CGA -154281 (1 μM) had no effect on the activity of the isozymes selective for trans-cinnamic acid and atrazine but increased the activity of the constitutively-expressed isozymes that exhibit activity with 1-chloro-2,4-dinitrobenzene, metola­chlor and the sulfoxide derivative of S-ethyl dipropylcarbamothioate. The safener pretreat­ment also caused the appearance of one new isozyme active with 1-chloro-2,4-dinitrobenzene and one new isozyme active with metolachlor. The results illustrate the complexity of gluta­thione S-transferase activity in etiolated maize shoots, and the selective enhancement of gluta­thione S-transferase isozymes by the safener CGA -154281.


1989 ◽  
Vol 264 (3) ◽  
pp. 737-744 ◽  
Author(s):  
P Steinberg ◽  
H Schramm ◽  
L Schladt ◽  
L W Robertson ◽  
H Thomas ◽  
...  

The distribution and inducibility of cytosolic glutathione S-transferase (EC 2.5.1.18) and glutathione peroxidase (EC 1.11.1.19) activities in rat liver parenchymal, Kupffer and endothelial cells were studied. In untreated rats glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and 4-hydroxynon-2-trans-enal as substrates was 1.7-2.2-fold higher in parenchymal cells than in Kupffer and endothelial cells, whereas total, selenium-dependent and non-selenium-dependent glutathione peroxidase activities were similar in all three cell types. Glutathione S-transferase isoenzymes in parenchymal and non-parenchymal cells isolated from untreated rats were separated by chromatofocusing in an f.p.l.c. system: all glutathione S-transferase isoenzymes observed in the sinusoidal lining cells were also detected in the parenchymal cells, whereas Kupffer and endothelial cells lacked several glutathione S-transferase isoenzymes present in parenchymal cells. At 5 days after administration of Arocolor 1254 glutathione S-transferase activity was only enhanced in parenchymal cells; furthermore, selenium-dependent glutathione peroxidase activity decreased in parenchymal and non-parenchymal cells. At 13 days after a single injection of Aroclor 1254 a strong induction of glutathione S-transferase had taken place in all three cell types, whereas selenium-dependent glutathione peroxidase activity remained unchanged (endothelial cells) or was depressed (parenchymal and Kupffer cells). Hence these results clearly establish that glutathione S-transferase and glutathione peroxidase are differentially regulated in rat liver parenchymal as well as non-parenchymal cells. The presence of glutathione peroxidase and several glutathione S-transferase isoenzymes capable of detoxifying a variety of compounds in Kupffer and endothelial cells might be crucial to protect the liver from damage by potentially hepatotoxic substances.


1997 ◽  
Vol 31 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Galal E. M. D. Ghazaly ◽  
Madeha M. Zakahary ◽  
Mohamed A. A. El-aziz ◽  
Ahmed A. E. M. Mahmoud ◽  
Pablo Carretero ◽  
...  

2015 ◽  
Vol 10 (3) ◽  
pp. 117-124
Author(s):  
Kuldeep Kaushik ◽  
Pawan Kumar Mittal ◽  
Natwar Raj Kalla

Placenta ◽  
1986 ◽  
Vol 7 (2) ◽  
pp. 155-162 ◽  
Author(s):  
C. Di Ilio ◽  
P. Sacchetta ◽  
G. Del Boccio ◽  
E. Casalone ◽  
G. Polidoro

Sign in / Sign up

Export Citation Format

Share Document