scholarly journals Experimental study of water cooling irregularity in the natural draft cooling tower

Vestnik IGEU ◽  
2016 ◽  
pp. 15-20
Author(s):  
A.I. Badriev ◽  
◽  
V.N. Sharifullin ◽  
2009 ◽  
Vol 13 (4) ◽  
pp. 91-98
Author(s):  
Elazm Abo ◽  
Farouk Elsafty

The main objective of this study is to find a proper solution for the cross-flow water cooling tower problem, also to find an empirical correlation's controlling heat and mass transfer coefficients as functions of inlet parameters to the tower. This is achieved by constructing an experimental rig and a computer program. The computer simulation solves the problem numerically. The apparatus used in this study comprises a cross-flow cooling tower. From the results obtained, the 'characteristic curve' of cross-flow cooling towers was constructed. This curve is very helpful for designers in order to find the actual value of the number of transfer units, if the values of inlet water temperature or inlet air wet bulb temperature are changed. Also an empirical correlation was conducted to obtain the required number of transfer units of the tower in hot water operation. Another correlation was found to obtain the effectiveness in the wet bulb operation.


2018 ◽  
Vol 128 ◽  
pp. 762-771 ◽  
Author(s):  
Xiaoxiao Li ◽  
Hal Gurgenci ◽  
Zhiqiang Guan ◽  
Yubiao Sun

2021 ◽  
Vol 188 ◽  
pp. 116628 ◽  
Author(s):  
Yuchen Dai ◽  
Yuanshen Lu ◽  
Alexander Y. Klimenko ◽  
Ying Wang ◽  
Kamel Hooman

Author(s):  
Eugene Grindle ◽  
John Cooper ◽  
Roger Lawson

This paper presents an assessment of heat injection as a means of improving natural draft cooling tower performance. The concept involves injecting heat into the cooling tower exit air/vapor stream immediately above the drift eliminators in order to increase the difference between the density of the exit air/vapor stream and the ambient air. The density difference between the air/vapor in the cooling tower stack and the ambient air is the engine that drives airflow through the cooling tower. The enhancement of the airflow through the cooling tower (the natural draft) results in more evaporation and thus lowers the circulating water temperature. Because the heat is injected above the drift eliminators, it does not heat the circulating water. To evaluate the cooling tower performance improvement as a function of heat injection rate, a thermal/aerodynamic computer model of Entergy’s White Bluff 1 & 2 and Independence 1 & 2 (approximately 840 MW each) natural draft cooling towers was developed. The computer model demonstrated that very substantial reductions in cold water temperature (up to 7°F) are obtainable by the injection of heat. This paper also discusses a number of possible heat sources. Sources of heat covered include extraction steam, auxiliary steam, boiler blow-down, and waste heat from a combustion turbine. The latter source of heat would create a combined cycle unit with the combination taking place in the condensing part of the cycle (bottom of the cycle) instead of the steam portion of the cycle (top of the cycle).


2017 ◽  
Vol 112 ◽  
pp. 326-339 ◽  
Author(s):  
Huan Ma ◽  
Fengqi Si ◽  
Yu Kong ◽  
Kangping Zhu ◽  
Wensheng Yan

Sign in / Sign up

Export Citation Format

Share Document