Improving Natural Draft Cooling Tower Performance With Heat Injection

Author(s):  
Eugene Grindle ◽  
John Cooper ◽  
Roger Lawson

This paper presents an assessment of heat injection as a means of improving natural draft cooling tower performance. The concept involves injecting heat into the cooling tower exit air/vapor stream immediately above the drift eliminators in order to increase the difference between the density of the exit air/vapor stream and the ambient air. The density difference between the air/vapor in the cooling tower stack and the ambient air is the engine that drives airflow through the cooling tower. The enhancement of the airflow through the cooling tower (the natural draft) results in more evaporation and thus lowers the circulating water temperature. Because the heat is injected above the drift eliminators, it does not heat the circulating water. To evaluate the cooling tower performance improvement as a function of heat injection rate, a thermal/aerodynamic computer model of Entergy’s White Bluff 1 & 2 and Independence 1 & 2 (approximately 840 MW each) natural draft cooling towers was developed. The computer model demonstrated that very substantial reductions in cold water temperature (up to 7°F) are obtainable by the injection of heat. This paper also discusses a number of possible heat sources. Sources of heat covered include extraction steam, auxiliary steam, boiler blow-down, and waste heat from a combustion turbine. The latter source of heat would create a combined cycle unit with the combination taking place in the condensing part of the cycle (bottom of the cycle) instead of the steam portion of the cycle (top of the cycle).

2018 ◽  
Vol 8 (1) ◽  
pp. 135-138
Author(s):  
Anatoly A. KUDINOV ◽  
Yulia E. DEMINA

The article presents result of a research a system of the venting of exhaust gases of the recovery boiler the gas turbine plant through the natural draft cooling tower in the environment. The use of this scheme allows the fl ue gases to lower the temperature of the circulating water at the outlet of the cooling tower to provide a deeper vacuum in the condenser steam turbine combined cycle power plant with simultaneous reduction of capital to build chimneys. As a result of the application of this scheme, an increase in the absolute electric effi ciency of turbines is achieved. As stated in Article method of calculating the removal of exhaust fl ue gas systems with a perforated distributor ring allows to determine the level of engineering design and volume requirements of these systems.


Author(s):  
Tom V. Eldredge ◽  
John M. Stapleton

Abstract This paper utilizes numerical modeling to address the effects of two parameters on natural draft cooling tower performance, namely the radial hot water distribution and flue gas injection. Predictions show that cold water temperature leaving the tower can be slightly decreased by increasing the weighting of the radial hot water distribution towards the tower periphery. The injection of scrubbed flue gas into the tower chimney can have either a positive or a negative effect on tower cooling performance, depending on the temperature of the flue gas relative to the temperature of moist air in the chimney. The temperature of the scrubbed flue gas is the primary variable affecting cooling tower performance, associated with flue gas injection. This paper investigates using the radial distribution of hot water to optimize the tower cooling performance when injecting scrubbed flue gas into the chimney, both for conditions when the flue gas is warmer and cooler than the temperature of moist air in the chimney. Predictions with no flue gas injection show that optimizing hot water distribution produced 0.4 °C reduction in cooled water temperature. With relatively cold (32.2 °C) and relatively hot (65.6 °C) flue gas injection, optimizing hot water distribution produced slightly more than 0.2 °C reduction in cooled water temperature.


Author(s):  
Ranga Nadig ◽  
Dave Sanderlin

In power plant locations with adequate supply of cooling water the steam from the steam turbine is condensed in a water cooled condenser. In most instances circulating water from the cooling tower is used to condense the turbine exhaust steam. In other instances once through cooling is deployed wherein water from a lake, river or sea is used to condense the turbine exhaust steam. In water challenged locations or locations where wet cooling cannot be deployed due to permitting or regulatory issues, the steam from the steam turbine is condensed in an air cooled condenser (ACC) wherein ambient air is used to cool and condense the turbine exhaust steam. In a combined cycle plant, during normal operation, the water or air cooled condenser condenses the turbine exhaust steam. During bypass operation, when the steam turbine is out of service, the high-pressure steam from the HRSG is attemperated in a pressure reducing/desuperheating (PRD) valve and then admitted into the water cooled or air cooled condenser. The bypass steam flow is substantially higher than the design turbine exhaust steam flow and the duration of bypass operation can vary from a few hours to several weeks. The requirements for admission of bypass steam into a water cooled condenser are substantially different from that for an air cooled condenser. In a water cooled condenser the bypass steam is admitted in the steam dome. The bypass steam as well as the turbine exhaust steam is condensed outside the tubes. In an air cooled condenser the bypass steam is admitted in the large diameter steam duct. The bypass, as well as the turbine exhaust steam (normal operation), is condensed inside the tubes. There are similarities and differences in the requirements for admission of bypass steam into a water cooled and air cooled condenser. The differences must be identified and addressed to ensure safe and reliable performance of the condenser.


2021 ◽  
Vol 188 ◽  
pp. 116628 ◽  
Author(s):  
Yuchen Dai ◽  
Yuanshen Lu ◽  
Alexander Y. Klimenko ◽  
Ying Wang ◽  
Kamel Hooman

2017 ◽  
Vol 112 ◽  
pp. 326-339 ◽  
Author(s):  
Huan Ma ◽  
Fengqi Si ◽  
Yu Kong ◽  
Kangping Zhu ◽  
Wensheng Yan

2018 ◽  
Vol 137 ◽  
pp. 93-100 ◽  
Author(s):  
Weiliang Wang ◽  
Hai Zhang ◽  
Junfu Lyu ◽  
Qing Liu ◽  
Guangxi Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document