Experimental Study of the parameters Affect on the Thermal Performance of Cooling Tower

2018 ◽  
Vol 41 (4) ◽  
pp. 289-299
2014 ◽  
Vol 87 ◽  
pp. 530-538 ◽  
Author(s):  
Arash Mirabdolah Lavasani ◽  
Zahra Namdar Baboli ◽  
Mohsen Zamanizadeh ◽  
Masoud Zareh

2020 ◽  
Vol 329 ◽  
pp. 03007
Author(s):  
Ilnur Madyshev ◽  
Ildar Sabanaev ◽  
Vitaly Kharkov ◽  
Lenar Ganiev ◽  
Andrey Dmitriev

Biofouling can significantly deteriorate the efficiency of cooling towers. A cooling tower with a three-flow cooling circuit has been developed. The fill pack consists of inclined-corrugated contact elements with perforation. One of the advantages of the proposed cooling tower is the possibility of uniform distribution of liquid over the cross-sectional area. The paper represents the results of an experimental study of the thermal performance of the three-flow cooling tower. It was found that when the wetting rate of the liquid increases, the thermal performance of the cooling tower can reach 47.8%. The developed three-flow cooling tower allows excluding the propagation of microorganisms and reducing the biofouling of industrial water systems along with the high performance for circulating water.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


Sign in / Sign up

Export Citation Format

Share Document