scholarly journals VECTOR SPACES AS COLOURED, TOPOLOGICALLY DIRECTED-FREE GRAPHS FOR FINITE ABELIAN GROUPS AND THEIR C*-ALGEBRAS

Author(s):  
Takahiro Sudo
2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


Author(s):  
Amaira Moaitiq Mohammed Al-Johani

In abstract algebra, an algebraic structure is a set with one or more finitary operations defined on it that satisfies a list of axioms. Algebraic structures include groups, rings, fields, and lattices, etc. A group is an algebraic structure (????, ∗), which satisfies associative, identity and inverse laws. An Abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, these are the groups that obey the axiom of commutatively. The concept of an Abelian group is one of the first concepts encountered in abstract algebra, from which many other basic concepts, such as rings, commutative rings, modules and vector spaces are developed. This study sheds the light on the structure of the finite abelian groups, basis theorem, Sylow’s theorem and factoring finite abelian groups. In addition, it discusses some properties related to these groups. The researcher followed the exploratory and comparative approaches to achieve the study objective. The study has shown that the theory of Abelian groups is generally simpler than that of their non-abelian counter parts, and finite Abelian groups are very well understood.  


2016 ◽  
Vol 58 ◽  
pp. 181-202 ◽  
Author(s):  
R. Balasubramanian ◽  
Gyan Prakash ◽  
D.S. Ramana

1972 ◽  
Vol 24 (3) ◽  
pp. 520-529 ◽  
Author(s):  
Man-Duen Choi

The objective of this paper is to give some concrete distinctions between positive linear maps and completely positive linear maps on C*-algebras of operators.Herein, C*-algebras possess an identity and are written in German type . Capital letters A, B, C stand for operators, script letters for vector spaces, small letters x, y, z for vectors. Capital Greek letters Φ, Ψ stand for linear maps on C*-algebras, small Greek letters α, β, γ for complex numbers.We denote by the collection of all n × n complex matrices. () = ⊗ is the C*-algebra of n × n matrices over .


Sign in / Sign up

Export Citation Format

Share Document