scholarly journals A Study on Finite Abelian Groups: Sylow’s Theorems Based

Author(s):  
Amaira Moaitiq Mohammed Al-Johani

In abstract algebra, an algebraic structure is a set with one or more finitary operations defined on it that satisfies a list of axioms. Algebraic structures include groups, rings, fields, and lattices, etc. A group is an algebraic structure (????, ∗), which satisfies associative, identity and inverse laws. An Abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, these are the groups that obey the axiom of commutatively. The concept of an Abelian group is one of the first concepts encountered in abstract algebra, from which many other basic concepts, such as rings, commutative rings, modules and vector spaces are developed. This study sheds the light on the structure of the finite abelian groups, basis theorem, Sylow’s theorem and factoring finite abelian groups. In addition, it discusses some properties related to these groups. The researcher followed the exploratory and comparative approaches to achieve the study objective. The study has shown that the theory of Abelian groups is generally simpler than that of their non-abelian counter parts, and finite Abelian groups are very well understood.  

2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


2011 ◽  
Vol 12 (01n02) ◽  
pp. 125-135 ◽  
Author(s):  
ABBY GAIL MASK ◽  
JONI SCHNEIDER ◽  
XINGDE JIA

Cayley digraphs of finite abelian groups are often used to model communication networks. Because of their applications, extremal Cayley digraphs have been studied extensively in recent years. Given any positive integers d and k. Let m*(d, k) denote the largest positive integer m such that there exists an m-element finite abelian group Γ and a k-element subset A of Γ such that diam ( Cay (Γ, A)) ≤ d, where diam ( Cay (Γ, A)) denotes the diameter of the Cayley digraph Cay (Γ, A) of Γ generated by A. Similarly, let m(d, k) denote the largest positive integer m such that there exists a k-element set A of integers with diam (ℤm, A)) ≤ d. In this paper, we prove, among other results, that [Formula: see text] for all d ≥ 1 and k ≥ 1. This means that the finite abelian group whose Cayley digraph is optimal with respect to its diameter and degree can be a cyclic group.


2019 ◽  
Vol 150 (4) ◽  
pp. 1937-1964 ◽  
Author(s):  
Hua-Lin Huang ◽  
Zheyan Wan ◽  
Yu Ye

AbstractWe provide explicit and unified formulas for the cocycles of all degrees on the normalized bar resolutions of finite abelian groups. This is achieved by constructing a chain map from the normalized bar resolution to a Koszul-like resolution for any given finite abelian group. With a help of the obtained cocycle formulas, we determine all the braided linear Gr-categories and compute the Dijkgraaf–Witten Invariants of the n-torus for all n.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1537 ◽  
Author(s):  
Lingling Han ◽  
Xiuyun Guo

In this paper, we mainly count the number of subgroup chains of a finite nilpotent group. We derive a recursive formula that reduces the counting problem to that of finite p-groups. As applications of our main result, the classification problem of distinct fuzzy subgroups of finite abelian groups is reduced to that of finite abelian p-groups. In particular, an explicit recursive formula for the number of distinct fuzzy subgroups of a finite abelian group whose Sylow subgroups are cyclic groups or elementary abelian groups is given.


2015 ◽  
Vol 92 (1) ◽  
pp. 24-31
Author(s):  
ZHENHUA QU

Let$G$be a finite abelian group and$A\subseteq G$. For$n\in G$, denote by$r_{A}(n)$the number of ordered pairs$(a_{1},a_{2})\in A^{2}$such that$a_{1}+a_{2}=n$. Among other things, we prove that for any odd number$t\geq 3$, it is not possible to partition$G$into$t$disjoint sets$A_{1},A_{2},\dots ,A_{t}$with$r_{A_{1}}=r_{A_{2}}=\cdots =r_{A_{t}}$.


1987 ◽  
Vol 29 (2) ◽  
pp. 197-203 ◽  
Author(s):  
A. O. Morris ◽  
M. Saeed-Ul-Islam ◽  
E. Thomas

In this paper, we continue the work initiated by Morris [5] and Saeed-ul-Islam [6,7] and determine complete sets of inequivalent irreducible projective representations (which we shall write as i.p.r.) of finite Abelian groups with respect to some additional factor sets.We consider an Abelian groupwhich will be referred to as an Abelian group of type (a1, …, am).


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Zhao Jinxing ◽  
Nan Jizhu

We study the dynamics of endomorphisms on a finite abelian group. We obtain the automorphism group for these dynamical systems. We also give criteria and algorithms to determine whether it is a fixed point system.


1969 ◽  
Vol 21 ◽  
pp. 712-729 ◽  
Author(s):  
Benson Samuel Brown

For a prime number p let be the class of finite abelian groups whose orders are prime to p. For a finitely generated abelian group G, let Gp be the sum of the free and p-primary components of G. Our aim in this paper is to prove the following theorem.Theorem. Suppose that(i) Hi(X;Z) = 0 for i > k,(ii) for i > k – dThen there exists a spectral sequence withand the differential is given by


1998 ◽  
Vol 58 (3) ◽  
pp. 479-493 ◽  
Author(s):  
Francis Oger

We show that two finitely generated finite-by-nilpotent groups are elementarily equivalent if and only if they satisfy the same sentences with two alternations of quantifiers. For each integer n ≥ 2, we prove the same result for the following classes of structures:(1) the (n + 2)-tuples (A1, …, An+1, f), where A1, …, An+1 are disjoint finitely generated Abelian groups and f: A1 × … × An → An+1 is a n-linear map;(2) the triples (A, B, f), where A, B are disjoint finitely generated Abelian groups and f: An → B is a n-linear map;(3) the pairs (A, f), where A is a finitely generated Abelian group and f: An → A is a n-linear map.In the proof, we use some properties of commutative rings associated to multilinear maps.


10.37236/899 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Jujuan Zhuang

Let $G=C_{n_1}\oplus \ldots \oplus C_{n_r}$ be a finite abelian group with $r=1$ or $1 < n_1|\ldots|n_r$, and let $S=(a_1,\ldots,a_t)$ be a sequence of elements in $G$. We say $S$ is an unextendible sequence if $S$ is a zero-sum free sequence and for any element $g\in G$, the sequence $Sg$ is not zero-sum free any longer. Let $L(G)=\lceil \log_2{n_1}\rceil+\ldots+\lceil \log_2{n_r}\rceil$ and $d^*(G)=\sum_{i=1}^r(n_i-1)$, in this paper we prove, among other results, that the minimal length of an unextendible sequence in $G$ is not bigger than $L(G)$, and for any integer $k$, where $L(G)\leq k \leq d^*(G)$, there exists at least one unextendible sequence of length $k$.


Sign in / Sign up

Export Citation Format

Share Document