EFFECT OF CONTROLLED ATMOSPHERE STORAGE AFTER INITIAL LOW OXYGEN STRESS TREATMENT ON SUPERFICIAL SCALD DEVELOPMENT ON SOUTH AFRICAN-GROWN GRANNY SMITH AND TOPRED APPLES

2003 ◽  
pp. 261-265 ◽  
Author(s):  
J.A. van der Merwe ◽  
J.C. Combrink ◽  
F.J. Calitz
HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 512B-512
Author(s):  
Krista C. Shellie

Green mold, a predominant disease of citrus fruit, develops when spores of Penicillium digitatum infect extant wounds in fruit epidermal tissue. Development of green mold during shipping limits the distance grapefruit can be surface transported. The objective of this research was to evaluate whether altering the atmosphere during refrigerated storage could suppress development of green mold. In the first two experiments, growth of green mold was evaluated after fruit were stored in ultra-low oxygen (0.05 or 1 kPa) at 14, 16, or 18 °C for up to 21 days. In the last two experiments, grapefruit were stored for 14 or 21 d at 12, 13, or 14 °C in atmospheres containing 2, 5, or 10 kPa oxygen with or without 2, 5, 10, or 20 kPa carbon dioxide. In all experiments, grapefruit were inoculated with 10 or 20 μL of a spore suspension of P. digitatum. Decay progression after storage was monitored by measuring the diameter of the lesion in cm at the demarcated site of inoculation or by subjectively rating percent decayed fruit surface area. Grapefruit not inoculated with P. digitatum had no visible symptoms of green mold. Grapefruit stored under controlled atmosphere had less fruit surface covered with mycelium (5% to 64%) than grapefruit stored in air. Inoculated grapefruit stored in 0.05 kPa oxygen for up to 14 d at 14 or 18 °C had no visible symptoms of green mold upon removal from cold storage, but developed a characteristic green mold lesion after 5 additional days of storage in air at ambient temperature. Results suggest that refrigerated controlled-atmosphere storage combined with wax and a fungicide can enhance control of green mold during shipping.


HortScience ◽  
2001 ◽  
Vol 36 (5) ◽  
pp. 951-952 ◽  
Author(s):  
C. Chervin ◽  
J. Raynal ◽  
N. André ◽  
A. Bonneau ◽  
P. Westercamp

The effects of ethanol vapors, controlled atmosphere (CA) storage, and a combination of both on superficial scald development on `Granny Smith' apples (Malus ×domestica Borkh.) are reported. The major result was that ethanol vapors, applied in cold storage, prevented scald development over a week at 20 °C in apples that had been CA-stored for 4 months, then left for 1 month in cold air storage. Interrupting CA storage aimed to reproduce industry practices when fruit in part of storage rooms has to be sold and the remaining fruit is held in air for later sale. The estimated cost and further development of this method are discussed.


Sign in / Sign up

Export Citation Format

Share Document