concentration time
Recently Published Documents


TOTAL DOCUMENTS

1237
(FIVE YEARS 262)

H-INDEX

65
(FIVE YEARS 7)

Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 96
Author(s):  
Takashi Ueda ◽  
Yoshio Takesue ◽  
Kazuhiko Nakajima ◽  
Kaoru Ichiki ◽  
Kaori Ishikawa ◽  
...  

Area under the concentration–time curve (AUC)-guided vancomycin treatment is associated with decreased nephrotoxicity. It is preferable to obtain two samples to estimate the AUC. This study examined the usefulness of AUC estimation via trough concentration (Cmin)-only sampling of 260 adults infected with methicillin-resistant Staphylococcus aureus (MRSA) who received vancomycin. The exact Cmin sampling time was used for Bayesian estimation. A significantly higher early treatment response was observed in patients with a day 2 AUC ≥ 400 µg·h/mL than those with <400 µg·h/mL, and a significantly higher early nephrotoxicity rate was observed in patients with a day 2 AUC ≥ 600 µg·h/mL than those with <600 µg·h/mL. These AUC cutoff values constituted independent factors for each outcome. In sub-analysis, the discrimination ability for early clinical outcomes using these AUC cutoffs was confirmed only in patients with q12 vancomycin administration. A significant difference in early treatment response using the 400 µg·h/mL cutoff was obtained only in patients with low-risk infections. The usefulness of the vancomycin AUC target to decrease nephrotoxicity while assuring clinical efficacy was even confirmed with a single Cmin measurement. However, assessment with two samples might be required in patients with q24 administration or high/moderate-risk MRSA infections.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Takuma Yonemura ◽  
Rie Yazawa ◽  
Miwa Haranaka ◽  
Kazuki Kawakami ◽  
Masayuki Takanuma ◽  
...  

Abstract Background FKB327 has been developed as a biosimilar of the adalimumab reference product (RP). We compared the pharmacokinetics (PK), safety, and immunogenicity of FKB327 with those of the adalimumab RP after a single dose by subcutaneous (SC) injection in Japanese male participants. Methods Two randomized, single-blind, single-dose studies were conducted in healthy Japanese male participants to compare PK characteristics between FKB327 and the RP. Study 1 included 130 participants who were randomized in a 1:1 ratio to receive a subcutaneous injection of 40 mg of either FKB327 or the RP into the abdomen. In Study 2, another 130 subjects were randomized in a 1:1 ratio to receive either drug as in Study 1, but the drug administration site was changed to the thigh. The primary PK endpoints of both studies were area under the concentration-time curve from time zero to the last measurable concentration (AUC0-t) and maximum serum concentration; area under the concentration-time curve from time zero to 360 h was also evaluated as one of the primary endpoints in Study 1. Biosimilarity in terms of pharmacokinetics was determined if the 90% confidence interval of the mean difference in geometric mean ratio of all primary PK parameters was within the prespecified equivalence criteria (0.80–1.25). Immunogenicity and safety were also evaluated as secondary endpoints. Results The serum concentration-time profiles were comparable between the FKB327 and the RP treatment groups in both studies. Primary PK parameters were within the prespecified bioequivalence range in Study 2, although AUC0-t was slightly outside the upper side of the range in Study 1. No differences in safety profile were observed in these studies. The incidence of anti-drug antibodies (ADAs) and impact of ADAs on PK profile were similar among the treatment groups in both studies. Conclusion Biosimilarity between FKB327 and the RP after a single 40-mg SC injection was confirmed in healthy Japanese male participants by modifying the study design. Trial registration jRCT2071200058 (https://jrct.niph.go.jp/en-latest-detail/jRCT2071200058, https://rctportal.niph.go.jp/en/detail?trial_id=jRCT2071200058) and jRCT2071200057 (https://jrct.niph.go.jp/en-latest-detail/jRCT2071200057, https://rctportal.niph.go.jp/en/detail?trial_id=jRCT2071200057). Retrospectively registered 25/11/2020.


Author(s):  
Zoe Oesterreicher ◽  
Sabine Eberl ◽  
Beatrix Wulkersdorfer ◽  
Peter Matzneller ◽  
Claudia Eder ◽  
...  

Abstract Background and Objective In microdose studies, drug pharmacokinetics is measured in humans after administration of subtherapeutic doses. While previous microdose studies focused primarily on plasma pharmacokinetics, we set out to evaluate the feasibility of microdosing for a pharmacokinetic assessment in subcutaneous tissue and epithelial lining fluid. Methods Healthy subjects received a single intravenous bolus injection of a microdose of [14C]ciprofloxacin (1.1 µg, 7 kBq) with (cohort A, n = 9) or without (cohort B, n = 9) a prior intravenous infusion of a therapeutic dose of unlabeled ciprofloxacin (400 mg). Microdialysis and bronchoalveolar lavage were applied for determination of subcutaneous and intrapulmonary drug concentrations. Microdose [14C]ciprofloxacin was quantified by accelerator mass spectrometry and therapeutic-dose ciprofloxacin by liquid chromatography–tandem mass spectrometry. Results The pharmacokinetics of therapeutic-dose ciprofloxacin (cohort A) in plasma, subcutaneous tissue, and epithelial lining fluid was in accordance with previous data. In plasma and subcutaneous tissue, the dose-adjusted area under the concentration–time curve of microdose ciprofloxacin was similar in cohorts A and B and within an 0.8-fold to 1.1-fold range of the area under the concentration–time curve of therapeutic-dose ciprofloxacin. Penetration of microdose ciprofloxacin into subcutaneous tissue was similar in cohorts A and B and comparable to that of therapeutic-dose ciprofloxacin with subcutaneous tissue-to-plasma area under the concentration–time curve ratios of 0.44, 0.44, and 0.38, respectively. Penetration of microdose ciprofloxacin into epithelial lining fluid was highly variable and failed to predict the epithelial lining fluid penetration of therapeutic-dose ciprofloxacin. Conclusions Our study confirms the feasibility of microdosing for pharmacokinetic measurements in plasma and subcutaneous tissue. Microdosing combined with microdialysis is a potentially useful tool in clinical antimicrobial drug development, but its applicability for the assessment of pulmonary pharmacokinetics with bronchoalveolar lavage requires further studies. Clinical Trial Registration ClinicalTrials.gov NCT03177720 (registered 6 June, 2017).


2021 ◽  
Vol 23 (2) ◽  
pp. 92-97
Author(s):  
Marisa Gracia Bakara ◽  
Makhziah Makhziah ◽  
Guniarti Guniarti

[SWEET CORN EXTRACT AND COCONUT WATER EFFECT TO INDUCE GARLIC (Allium sativum L.) ADVENTIST SHOOTS BY IN-VITRO CULTURE]. Garlic (Allium sativum L.) is one of the horticultural plants used daily for various uses. This study aims to determine the best extract concentration of sweet corn and coconut water and its interaction for induction garlic Adventist shoots (Allium sativum L.) var. Lumbu Hijau. The study was conducted at the Biotechnology Laboratory, Agriculture Faculty, UPN ”Veteran” East Java, in February – April 2021. The experimental design used was a factorial completely randomized design (CRD). The first factor is four levels of extract of sweet corn concentration (0, 50, 100, and 150 g/L), while the second factor is four levels of coconut water concentration (0, 50, 100, and 150 mL/L). The results showed that the extract of sweet corn concentration-time treatment increased the growing adventist shoots percentage, adventist shoots number, and adventist shoots size. The section of sweet corn concentration of 150 g/L increased the rate of growing adventist shoots, adventist shoots number, and adventist shoots size. The treatment of coconut water concentration and its interaction with the extract of sweet corn concentration is still not able for induction garlic adventist shoots (Allium sativum L.) of the var. Lumbu Hijau.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhongxia Tan ◽  
Youxi Zhang ◽  
Chao Wang ◽  
Le Sun

The aim of this study was to develop physiologically based pharmacokinetic (PBPK) models capable of simulating cefadroxil concentrations in plasma and tissues in mouse, rat, and human. PBPK models in this study consisted of 14 tissues and 2 blood compartments. They were established using measured tissue to plasma partition coefficient (Kp) in mouse and rat, absolute expression levels of hPEPT1 along the entire length of the human intestine, and the transporter kinetic parameters. The PBPK models also assumed that all the tissues were well-stirred compartments with perfusion rate limitations, and the ratio of the concentration in tissue to the unbound concentration in plasma is identical across species. These PBPK models were validated strictly by a series of observed plasma concentration–time profile data. The average fold error (AFE) and absolute average fold error (AAFE) values were all less than 2. The models’ rationality and accuracy were further demonstrated by the almost consistent Vss calculated by the PBPK model and noncompartmental method, as well as the good allometric scaling relationship of Vss and CL. The model suggests that hPEPT1 is the major transporter responsible for the oral absorption of cefadroxil in human, and the plasma concentration–time profiles of cefadroxil were not sensitive to dissolution rate faster than T85% = 2 h. The cefadroxil PBPK model in human is reliable and can be used to predict concentration–time profile at infected tissue. It may be useful for dose selection and informative decision-making during clinical trials and dosage form design of cefadroxil and provide a reference for the PBPK model establishment of hPEPT1 substrate.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
Manish Singh ◽  
Estera S. Dey ◽  
Sunil Bhand ◽  
Cedric Dicko

How many nanoparticles can we load in a fiber? How much will leak? Underlying is the relatively new question of the “space available” in fibers for nanoparticle loading. Here, using supercritical carbon dioxide (scCO2) as a carrier fluid, we explored the impregnation in four Indian silks (Mulberry, Eri, Muga, and Tasar) with five standard sizes of gold nanoparticles (5, 20, 50, 100 and 150 nm in diameter). All silks could be permanently impregnated with nanoparticles up to 150 nm in size under scCO2 impregnation. Accompanying structural changes indicated that the amorphous silk domains reorganized to accommodate the gold NPs. The mechanism was studied in detail in degummed Mulberry silk fibers (i.e., without the sericin coating) with the 5 nm nanoparticle. The combined effects of concentration, time of impregnation, scCO2 pressure, and temperature showed that only a narrow set of conditions allowed for permanent impregnation without deterioration of the properties of the silk fibers.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuqing Wang ◽  
Jianming Wu ◽  
Yunxia Li ◽  
Jing Yang ◽  
Long Wang ◽  
...  

To investigate the pharmacokinetics of 2, 3, 8-trimethylellagic (TMEA) in rats in vivo and determine the possible effects of the pathological conditions and compatibility, a rapid and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for quantitative determination was developed. TMEA and Artemetin (internal standard, IS) were separated on an Acquity Shim-pack GIST column with a total running time of 7 min using gradient elution at a flow rate of 0.3 mL/min. The intraday and interday relative standard deviations were <9.50%, and the relative error of accuracy was between −5.70% and 2.96%. The calibration curve of TMEA demonstrated good linearity with r2 = 0.9996, with the average recovery changing from 94.77% to 102.47% and the matrix effect from 93.16% to 100.15%. Compared with the normal group, the area under the plasma concentration-time curve from time 0 to the last time of quantifiable concentration (AUC(0 − t)), area under the plasma concentration-time curve from time 0 extrapolated to infinite time (AUC(0 − ∞)), and the maximum concentration (Cmax) of TMEA increased, whereas the time of maximum concentration (Tmax) and apparent clearance (CL/F) remarkably decreased in the TMEA group. With significantly reduced CL/F, AUC(0 − t), AUC(0 − ∞), and Cmax for TMEA were increased approximately one time after combining with 3, 7-Di-O-methylducheside A (DOMA). AUC(0 − t) and Cmax for TMEA in the 2, 3, 8-trimethylellagic-3, 8-dimethoxyellagic acid-2-oxyglucoside (TMEA-DMAG) group were significantly lower than that in the TMEA group with clearly prolonged Tmax and increased CL/F. These findings indicate that the changes in the pharmacokinetic parameters of TMEA may be caused by pathological and combination conditions.


2021 ◽  
Author(s):  
Ramesh Boinpally ◽  
Abhijeet Jakate ◽  
Matthew Butler ◽  
Antonia Periclou

Aim: To evaluate pharmacokinetic interactions of atogepant with sumatriptan, an open-label, randomized, crossover study was conducted. Patients & methods: Thirty healthy adults received atogepant 60 mg, sumatriptan 100 mg, or coadministered drugs. Primary end point was geometric mean ratios (GMRs) and 90% CIs of interventions for area under the plasma concentration–time curve from time 0 to t (AUC0-t) or infinity (AUC0-∞) and peak plasma concentration (Cmax). Results: Atogepant GMRs for AUC0-t and AUC0-∞ versus with sumatriptan were within 90% CI 0.80–1.25, indicating no interaction; atogepant Cmax was reduced by 22% (GMR: 0.78; 90% CI: 0.69–0.89) with sumatriptan. Sumatriptan GMRs for AUC0-t, AUC0-∞ and Cmax versus with atogepant were within 90% CI 0.80–1.25. Conclusion: Atogepant with sumatriptan had no clinically relevant pharmacokinetic interactions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Longfei Zhang ◽  
Hongbing Xie ◽  
Hongjuan Wang ◽  
Huanzhong Ding ◽  
Gaiping Zhang ◽  
...  

We wished to study the detailed and precise antibacterial activity of cefquinome against Actinobacillus pleuropneumoniae (APP) in vitro and ex vivo. We analyzed the relationships between kill rate and cefquinome concentration in broth and between pharmacokinetic/pharmacodynamic (PK/PD) parameters and antibacterial effect in serum and tissue cage fluid (TCF) of piglets. Cefquinome exhibited time-dependent antibacterial activity against APP according to the kill rate. The maximum kill rate was 0.48 log10 CFU/mL/h at the 0-9-h period in broth. In the ex vivo PK/PD study, the maximum concentration (Cmax), time to reach the maximum concentration (Tmax), terminal half-life (T1/2β), and area under the concentration time curve (AUCinfinity) were 5.65 μg/ml, 0.58 h, 2.24 h, and 18.48 μg·h/ml in serum and 1.13 μg/ml, 2.60 h, 12.22 h, and 20.83 μg·h/ml in TCF, respectively. The values of area under the curve during 24 h/minimum inhibitory concentration (AUC24h/MIC) for bacteriostatic, bactericidal, and bacterial eradication effects were 18.94, 246.8, and 1013.23 h in serum and 4.20, 65.81, and 391.35 h in TCF, respectively. Our findings will provide a valuable basis for optimization of dosage regimens when applying cefquinome to treat APP infection.


Sign in / Sign up

Export Citation Format

Share Document