Postharvest insect pest control for western flower thrips, Frankliniella occidentalis, in exported cut Proteaceae flowers

2019 ◽  
pp. 507-513
Author(s):  
A. Huysamer ◽  
E.W. Hoffman ◽  
S. Johnson
HortScience ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1708-1714
Author(s):  
Devin L. Radosevich ◽  
Raymond A. Cloyd ◽  
Nathan J. Herrick

The western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major insect pest of greenhouse-grown horticultural crops. Western flower thrips causes direct and indirect damage by feeding on plant leaves, flowers, and fruits, and by transmitting viruses that can result in greenhouse producers experiencing substantial economic losses. Consequently, insecticides are used to suppress western flower thrips populations. However, issues associated with applying insecticides may affect the suppression of western flower thrips populations. Therefore, experiments were conducted under greenhouse conditions to determine the effects of the spray volume applied and application frequency on insecticide efficacy against western flower thrips adults located in transvaal daisy, Gerbera jamesonii, cut flowers. Four spray volumes (5.0, 10.0, 12.5, and 25.0 mL), two application frequencies (one or two spray applications), and three insecticides [spinosad (Conserve), chlorfenapyr (Pylon), and flonicamid (Aria)], each with a different mode of action, were tested. The insecticide treatments had the greatest effects on the mean percent mortality of western flower thrips adults regardless of spray volume or application frequency. However, in Expt. 3, the 5.0- and 10.0-mL spray volumes resulted in a higher mean percent mortality of western flower thrips adults than the 2.5-mL spray volume. Spinosad and chlorfenapyr resulted in a mean percent mortality of more than 72% for western flower thrips adults, whereas flonicamid resulted in mean percent mortality between 40% and 91%. Our study demonstrates that certain insecticides are more effective against western flower thrips adults located in transvaal daisy flowers than others, which will help greenhouse producers effectively manage western flower thrips populations.


2019 ◽  
Vol 112 (5) ◽  
pp. 2085-2093
Author(s):  
Yinping Li ◽  
Raymond A Cloyd ◽  
Nora M Bello

Abstract Western flower thrips, Frankliniella occidentalis (Pergande), is a destructive insect pest in greenhouse production systems. Therefore, integrating the entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuillemin, with the soil-dwelling rove beetle, Dalotia coriaria (Kraatz), targeting different aboveground and belowground life stages may help effectively manage western flower thrips populations. Two greenhouse experiments were conducted evaluating five treatments: 1) insecticides (spinosad, pyridalyl, chlorfenapyr, and abamectin), 2) B. bassiana, 3) D. coriaria, 4) B. bassiana and D. coriaria combination, and 5) water control. The estimated mean number of western flower thrips adults captured on yellow sticky cards was significantly lower for the insecticide treatment (mean range: 0–46 western flower thrips adults per yellow sticky card) than the B. bassiana and D. coriaria combination (0.3–105.1 western flower thrips per yellow card) over 8 wk. There were no significant differences in the final foliar damage ratings of chrysanthemum, Dendranthema × grandiflorum (Ramat.) Kitam., plants among the five treatments in experiment 1, but there were significant differences in experiment 2. In experiment 2, chrysanthemum plants across all treatments were not marketable due to western flower thrips feeding damage. Therefore, using B. bassiana and D. coriaria early in production should suppress population growth by targeting both foliar-feeding and soil-dwelling life stages of western flower thrips simultaneously.


1975 ◽  
Vol 107 (8) ◽  
pp. 873-877 ◽  
Author(s):  
Harold F. Madsen ◽  
H. Fred Peters ◽  
Jerry M. Vakenti

AbstractA 2-year study on management of apple pests was carried out on six orchards in the interior of British Columbia. Sample techniques and treatment thresholds were satisfactory for most pests with the exception of fruittree leafroller, Archips argyrospilus (Walker), western flower thrips, Frankliniella occidentalis (Pergande), and the mirid Campylomma verbasci (Meyer). The number of chemical sprays per orchard averaged eight when the study was initiated. In 1973, the sprays required for pest control were reduced to an average of 5.6 per orchard, and in 1974, this figure was further reduced to 3.1. This reduction in chemical sprays was accomplished without an increase in insect or mite injury to fruit or foliage.


Author(s):  
Rocío Escobar-Bravo ◽  
Charlotte Nederpel ◽  
Sofía Naranjo ◽  
Hye Kyong Kim ◽  
María José Rodríguez-López ◽  
...  

Abstract Ultraviolet (UV) radiation has emerged as an environmental cue with potential uses to enhance plant protection against arthropod pests in agriculture. UV can augment constitutive and inducible plant defenses against herbivorous arthropods. Here we investigated whether application of supplemental UV to chrysanthemum (Chrysanthemum × morifolium Ramat) cuttings during their rooting phase enhanced plant resistance to an important insect pest, Western flower thrips (Frankliniella occidentalis). For this, we analyzed how several daily UV exposure times affected plant damage by thrips on three different chrysanthemum cultivars. The most effective UV dose and responsive cultivar were further used to determine the UV effects on host plant preference by thrips, leaf metabolome and the induction of jasmonic acid (JA)-associated defenses. Our results showed that while short UV daily exposure times increased chrysanthemum resistance to thrips, longer exposure times had the opposite effect. Furthermore, we showed that UV-mediated induction of chrysanthemum resistance to thrips was genotype dependent and can persist after the end of the of the UV treatment. Yet, this induction was not transferred to the next generation from mother plants to cuttings. Nontargeted metabolomic, enzymatic and hormone analyses further revealed that UV slightly affected the leaf metabolome of chrysanthemum plants, and it enhanced the induction of JA-associated signaling after thrips infestation. Taken together, our results suggest that supplemental UV might modulate both constitutive and inducible chrysanthemum defenses against thrips.


2014 ◽  
Vol 20 ◽  
pp. 25-32
Author(s):  
N Sapna Bai ◽  
OK Remadevi ◽  
TO Sasidharan ◽  
M Balachander ◽  
Priyadarsanan Dharmarajan

Context: Entomopathogenic fungi have been recognized as viable alternate options to chemicals in insect pest control. Unlike other potential biocontrol agents, fungi do not have to be ingested to infect their hosts but invade directly through the cuticle. Entry into the host involves both enzymic degradation of the cuticle barrier and mechanical pressure. Production of a range of cuticle degrading enzymes is an important event in the interaction of entomopathogenic fungi and host. Enzyme secretion is believed to be a key contributor for the virulence of a fungal isolate. Objectives: The potentiality of nine isolates of M. anisopliae were tested to produce to produce three important cuticle degrading enzymes, viz., chitinase, protease and lipase. Materials and Methods: Nine isolates of M. anisopliae were evaluated for chitinase, protease and lipase enzyme production by determining the enzyme index and activities. Results: Chitinase index of these isolates were ranged from 1.5 to 2.2 and chitinolytic activity from 0.525 to 1.560 U/ml. The isolates showed protease index in the range of 1.2 to 3.3 and the activity ranged from 0.020 to 0.114 U/ml. Lipase index ranged from 1.15 to 7.0 and the enzyme activity ranged from 0.153 to 0.500 U/ml. A strong relationship was observed between virulence of the isolates and cuticle degrading enzyme production as increased enzyme production was observed for virulent isolates. Conclusion: In the present study three isolates as (MIS2, MIS7 and MIS13) demonstrated cuticle degrading enzyme (CDE) that indicate higher virulence based on the bioassay conducted earlier by the authors as strongly substantiating the role of CDEs is considered the virulence of Metarhizium isolates. So, these isolates may be as ecofriendly insect-pest control agent in future. DOI: http://dx.doi.org/10.3329/jbs.v20i0.17648 J. bio-sci. 20: 25-32, 2012


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1384
Author(s):  
Dinar S. C. Wahyuni ◽  
Young Hae Choi ◽  
Kirsten A. Leiss ◽  
Peter G. L. Klinkhamer

Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.


2008 ◽  
Vol 98 (4) ◽  
pp. 355-359 ◽  
Author(s):  
P. Bielza ◽  
V. Quinto ◽  
C. Grávalos ◽  
E. Fernández ◽  
J. Abellán ◽  
...  

AbstractThe stability of spinosad resistance in western flower thrips (WFT),Frankliniella occidentalis(Pergande), populations with differing initial frequencies of resistance was studied in laboratory conditions. The stability of resistance was assessed in bimonthly residual bioassays in five populations with initial frequencies of 100, 75, 50, 25 and 0% of resistant individuals. There were no consistent changes in susceptibility of the susceptible strain after eight months without insecticide pressure. In the resistant strain, very highly resistant to spinosad (RF50>23,000-fold), resistance was maintained up to eight months without further exposure to spinosad. In the absence of any immigration of susceptible genes into the population, resistance was stable. In the case of the population with different initial frequency of resistant thrips, spinosad resistance declined significantly two months later in the absence of selection pressure. With successive generations, these strains did not change significantly in sensitivity. Spinosad resistance inF. occidentalisdeclined significantly in the absence of selection pressure and the presence of susceptible WFT. These results suggest that spinosad resistance probably is unstable under field conditions, primarily due to the immigration of susceptible WFT. Factors influencing stability or reversion of spinosad resistance are discussed.


2021 ◽  
Vol 70 ◽  
pp. 158-166
Author(s):  
Qiang Zhang ◽  
Wei Dou ◽  
Clauvis Nji Tizi Taning ◽  
Guy Smagghe ◽  
Jin-Jun Wang

Sign in / Sign up

Export Citation Format

Share Document